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Abstract: The Density Matrix Renormalization Group (DMRG) algorithm has been a rising star for the accurate ab
initio exploration of Born-Oppenheimer potential energy surfaces in theoretical chemistry. However, owing to its
iterative numerical nature, pitfalls that can affect the accuracy of DMRG energies need to be circumvented. Here,
after a brief introduction into this quantum chemical method, we discuss criteria that determine the accuracy of

DMRG calculations.
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1. Introduction

The Born-Oppenheimer approxima-
tion provides two central ingredients for
chemistry: one is the concept of molecular
structurelll and the other one is the elec-
tronic energy, which acts as a potential
energy that determines the motion of the
atomic nuclei (in this approximation the
‘potential in which the nuclei move’) and
from which thermodynamic as well as ki-
netic insights can be extracted. The elec-
tronic energy is thus central for theoretical
chemistry and calculated as the eigenvalue
of the electronic Schrodinger equation.
However, the accurate solution of this
equation is a delicate problem. Two major
directions emerged, namely wave-function
theory (WFT) and density-functional the-
ory (DFT). While DFT is doubtlessly the
most frequently applied approach in quan-
tum chemistry, it lacks the option of a sys-
tematic improvement on results obtained
with some setting (i.e. with some choice
for an approximate functional). For this
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reason, wave-function methods are under
continuous development, although they are
usually prohibitively expensive in terms of
computer time for large molecules of, say,
100 or more atoms.

The standard ansatz in these latter
methods is the pre-definition of a many-
electron basis set. From a chemist’s per-
spective, this may be viewed as a gener-
alization of the textbook LCAO concept
for orbitals to the total electronic wave
function, which is the eigenfunction in the
electronic Schrodinger equation. The stan-
dard many-electron basis set comprises
(linear combinations of) Slater determi-
nants containing the molecular orbitals.
The linear expansion parameters in front
of the determinants can be determined
either variationally (e.g. in configuration
interaction (CI) methods) or by projection
(as performed in standard coupled-cluster
(CC) approaches). Although the expan-
sion in terms of Slater determinants as-
sumes an independent-particle picture (as
it rests on the orbital approximation), it can
be made exact, if the determinant basis is
complete. Then, any electronic state of a
molecule can be expanded exactly in such
a complete many-electron basis set, which
is called ‘Full-CT’ in chemistry and ‘exact
diagonalization’ in physics. Unfortunately,
the albeit simple construction of this com-
plete basis set comes with the flaw that
the basis-set size grows factorially, which
makes its construction by a computer pro-
gram unfeasible but for the smallest mol-
ecules.

Naturally, approximations have been
devised which contributed popular and
accurate methods like multi-reference CI
or singles and doubles plus perturbatively
treated triples coupled-cluster, CCSD(T),
to the tools of trade of computational

chemistry. Although the success of CC
models is remarkable and although high-
ly efficient implementations have been
devised,!?! their extension to the general
multi-configurational case turned out to
be cumbersome so that no clear-cut, ef-
ficient solution of this problem appears
to be in sight. However, from a different
field, namely the physics of spin chains,
a totally new ansatz emerged: the Density
Matrix Renormalization Group (DMRG).
The DMRG algorithm was designed for
correlated quantum problems in con-
densed matter physics,3-31 which usually
assume a local, nearest-neighbors-only in-
teraction operator. Despite the fact that the
full Coulomb interaction of the electrons
in a molecule does not, in general, sustain
any of the locality assumptions made for
the development of DMRG, it was shown
that DMRG can be applied to challenging
quantum-chemical problems.[®91 A formal
analysis of the electronic state optimized
by DMRG is a so-called ‘matrix product
state’ (MPS).[101 The MPS concept can be
generalized to a more general framework,
which has been called ‘tensor network
state’!] and has also found application
for the full quantum chemical interaction
operator.[12-14]

For a given (finite) set of molecular or-
bitals, DMRG can systematically approach
the finite-basis Full-CI result in this active
orbital space. DMRG is variational and also
capable of describing multi-reference states
occurring in complicated electronic situa-
tions as found, for instance, in transition
metal complex and cluster chemistry.[13]
Howeyver, there is a catch because the ac-
curacy of a DMRG calculation depends on
a set of determining factors. While the role
of these factors has been fully appreciated
by the experts in the field, here we shall
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provide an overview of them that may help
establish DMRG as a standard technique
of the toolbox of the computational chem-
ist.

2. Theoretical Background

Similar to a CI wavefunction ansatz,
the electronic DMRG wave function can
be represented as a linear combination of
Slater determinants constructed from L
spatial orbitals

) =) MM - M7 |a), (q)

in which the coefficients are encoded as a
product of matrices M©". Therefore, states
in this particular format are called Matrix
Product States (MPS). The bold index o
is an abbreviation for the occupation num-
ber vector Gy s GL‘), which runs over
all possible orbital occupations and thus
labels the orthonormal basis states of the
L-orbital system that are the Slater deter-
minants. For each orbital, there is a set of
four matrices corresponding to the four
possible orbital occupations, labeled by
the upper index ¢,. Choosing an occupa-
tion for each orbital contributes to a Slater
determinant and determines one matrix per
orbital, in DMRG jargon called site. The
contraction of the selected matrices via or-
dinary matrix—matrix multiplication yields
the CI coefficient of the corresponding
determinant.l!6:17] Since these coefficients
are scalar, the matrices for the first and last
orbitals are required to be row and column
vectors respectively.

The DMRG algorithm then consists
of an iterative protocol, in which the site
matrices are variationally optimized with
respect to the energy in sequential order.
The basic ingredient of these local opti-
mization problems is the diagonalization
of the matching local part of the elec-
tronic Hamiltonian operator, which can
be achieved by employing a sparse di-
agonalizer such as the Jacobi-Davidson
algorithm. The sites that are undergoing
optimization constitute the active subsys-
tem, as shown in Fig. 1. As a result of the
optimization, the entries of the site matri-
ces are replaced by a new, optimized set of
entries, which correspond to the eigenvec-
tor of the local Hamiltonian operator with
the lowest eigenvalue. Combining the local
optimizations, the electronic ground-state
energy is calculated iteratively by passing
through all sites from left to right and vice
versa, referred to as a sweeping, until the
energy is converged. The rate at which this
happens strongly depends on whether a
single site is optimized at a time (single-
site DMRG) or two sites are simultane-

ously optimized (two-site DMRG). While
the former variant performs well for local
interaction operators, such as different
versions of the Hubbard model in Solid
State Physics, in Quantum Chemistry this
single-site DMRG gets trapped in local en-
ergy minima for even the simplest systems.
Two-site DMRG turns out to have much
more robust convergence properties, albeit
at a higher numerical cost.

A central feature of the ansatz in Eqn.
(1) is that its precision can be controlled
by adjusting the maximum dimension m
that each matrix is allowed to assume. If
m is allowed to grow exponentially ac-
cording to the Hilbert space dimension
of a system, DMRG becomes essentially
the Full-CI method. What allows DMRG
in many cases to perform much better in
terms of the scaling behavior than standard
Full-CI, however, is that the maximum ma-
trix dimension m needs only account for
a tiny fraction of the exponentially large
Hilbert space to achieve the same result
as Full-CI within numerical precision. In
one-dimensional systems with finite-range
interactions, m can even be held constant
with increasing system size and without
loss of accuracy. The physical basis for this
phenomenon, the so-called area laws of en-
tanglement, has been rigorously studied by
the condensed matter physics and quantum
information theory community.[!8.191 The
amount of entanglement between the two
parts of any system bipartion, measured by
the von Neumann entropy, is either con-
stant or a logarithmic function of the sys-
tem size.[201 Because the maximum amount
of entanglement that a state in the form of
Eqn. (1) can encode is determined by m,
this parameter is a central quantity of the
DMRG algorithm. It is called the number
of ‘renormalized basis states’ or the num-
ber of ‘block states’ as it is also equal to the
number of left and to the number of right
subsystem basis states, respectively, if one
divides the total system into two parts (Fig.
1). It is important to note that the number
of many-electron DMRG basis states, each
of which can be understood as complicated

linear combinations of Slater determinants,
is actually mx4x4xm = 16m? for the two-
sitt DMRG algorithm. Hence, the number
of variational parameters, which are CI-
type expansion coefficients in front of the
DMRG basis states, is also 16m2.

Another appealing feature of DMRG is
that, at least in the two-site variant of the
algorithm, the error introduced by limit-
ing m can be tracked in a systematic way
which will become clear in a moment.

Extending the left and the right subsys-
tem of orbitals by the adjacent active site
on its right and on its left, respectively,
yields the total system now bipartitioned
into two subsystems represented by 4m
many-electron basis states. The eigenvalue
problem for the combination of both en-
larged subsystems is thus of dimension
16m?. After diagonalizing the Hamiltonian
of this total system — sometimes called the
superblock Hamiltonian — a reduced den-
sity matrix can be constructed from the
Hamiltonian eigenvector by tracing out
all states on the complementary subsys-
tem. Diagonalizing this reduced density
matrix for the active subsystem yields m
eigenvectors with highest eigenvalue that
form a rectangular renormalization ma-
trix needed for the dimension reduction of
all creation and annihilation operators in
the Hamiltonian from 4m back to m. The
truncated weight of the m states, defined
as the sum of their eigenvalues, is a useful
measure for the accuracy of the approxi-
mate wave function as it tends to zero if
m is increased towards the dimension of
the complete Hilbert space. The selection
of m highest-eigenvalue eigenvectors for
the dimension reduction of all operators
(called ‘decimation’) can be understood as
a least-squares fit to reduced-dimensional
many-electron basis sets defined for the
two subsystems.

What makes DMRG a successful meth-
od in quantum chemistry is that between
10% and 10* subsystem states m are usually
sufficient to reduce the truncated weight
enough to calculate ground state energies
with sub-mHartree precision.

left subsystem

e j D &® & 8 Ko
@l > Ty
[ ] [ ] [ ] [ J [ ] [ ] [ ] [ ] ® o

active sites

right subsystem

Fig. 1. Partition of a chosen active molecular orbital space into left, active and right subsystems
on which DMRG many-electron basis states are constructed. If the sweep is processed from

left to right, then the left subsystem is the active subsystem, on which many-electron states are
systematically constructed, while the right (complementary) subsystem carries the many-particle
states optimized in the previous sweep processed in the opposite direction, i.e. from right to left.
In a DMRG iteration step, the left subsystem is now enlarged to incorporate the left active site and
the leftmost site of the right subsystem becomes active.
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3. Performance of the Method

As with other active-space methods,
the decisive parameter determining the
cost of a calculation is the number of cor-
related electrons in the number of active
orbitals. While traditional methods like
the complete-active-space self-consistent-
field (CASSCF) approach are exponen-
tially expensive with respect to the size of
the active space, DMRG formally exhibits
a scaling of O(m?L*) + O(m’L?). One must
bear in mind, however, that this behavior
breaks down if the amount of entanglement
measured by the von Neumann entropy be-
tween the two parts of any bipartition of
the system increases with the system size.
If this is the case, the number of renormal-
ized basis states m needed to attain a cer-
tain accuracy may increase dramatically.
In the worst case, exponential scaling is
recovered. Fortunately, many molecules
with a complicated electronic structure
still exhibit some degree of locality such
that the amount of entanglement does not
increase linearly with system size.

Besides the fundamental limitations of
active space size and entanglement, other,
more technical aspects also have a strong
influence on DMRG convergence and thus
on efficiency and possibly also on accura-
cy. These issues shall be discussed in some
depth in the next section.

4. Determining Factors of DMRG
Convergence and Accuracy

In this section, we provide an overview
of determining factors that affect DMRG
accuracy and are thus essential factors to
report if results from DMRG calculations
are exploited in chemical research.

The example data provided in this sec-
tion were computed with our new, mas-
sively parallel MPS-based quantum-chem-
ical DMRG program QC-MAQUISI2!
and with the Budapest quantum-chemical
DMRG program developed by O. Legeza
since 2000.[22]

4.1 Size of the Active Space

Despite the substantially higher com-
putational efficiency that DMRG achieves
compared to Full-CI, the exact treatment
of the electron correlation problem in the
full orbital basis remains out of reach on
today’s computers. For this reason, the
concept of a complete active space, which
emerged during the development of tra-
ditional electron correlation methods, is
important for DMRG calculations as well.
This concept selects a limited part of the
full orbital basis, in which the electronic
correlation is treated exactly and which is
chosen such that it presumably contains the
relevant contributions of the differential

electron correlation decisive for chemical
processes. Physically, this subspace can be
selected in a meaningful way, because the
strongest correlation effects occur within
the orbitals that lie, in the language of
physics, close to the Fermi level (in chemi-
cal terms, these are the frontier orbitals).
The rest of the full orbital basis below and
above the active space are referred to as
‘core’ and ‘virtual’ orbitals, and they are
assumed to be fully occupied and empty,
respectively. The number of determinants
involving virtual orbitals neglected from
the active space may contribute signifi-
cantly to the total electron-correlation en-
ergy. This type of correlation is referred to
as dynamic correlation. The advantage of
such a subdivision of the total orbital ba-
sis is that dynamic correlation effects can
be accounted for by perturbation theory or
other methods!?3241 Often, the choice of
a subdivision is made based on empirical
criteria. As a tool to aid choosing an ap-
propriate active space and assessing its re-
liability, we have developed a set of criteria
based on entanglement measures.[25:26]

4.2 Choice of the Molecular Orbitals

The introduction of an active space
entails that only a part of the orbital basis
is contained within the model. These mo-
lecular orbitals are therefore well suited for
a calculation if they allow one to express
a large share of the total static correlation
within an active space of a computationally
feasible size. Hence, the electronic ener-
gies depend on the orbital choice. If an
active space smaller than the one intended
to be used for the DMRG calculation can
be meaningfully selected in a preceding
CASSCEF calculation, the resulting preop-
timized CASSCEF natural molecular orbit-
als will be better suited for the subsequent
DMRG treatment than plain Hartree-Fock
molecular orbitals.

Employing localized molecular orbit-
als can have an effect on the performance
of DMRG.?1If long-ranged ‘interactions’
among localized orbitals become weak
enough, it might be possible to elimi-
nate some of the terms in the electronic
Hamiltonian by a screening of the two
electron integrals without affecting accu-
racy. If localized molecular orbitals in ad-

dition help to reduce the amount of entan-
glement in the system, a smaller number of
renormalized basis states will be required
to attain a certain accuracy, such that the
performance is further enhanced.

The orbital-dependence of DMRG
energies may be conveniently resolved
by combining the DMRG optimization
with an orbital relaxation protocoll28.29]
as implemented in standard methods like
CASSCF. Then, an optimum orbital set
for some chosen active orbital space may
be found that minimized the DMRG elec-
tronic energy.

4.3 Environment-state Guess in the
First Sweep

DMRG is an iterative method. The
speed at which a converged solution is ob-
tained strongly depends on the initial guess,
i.e. the initial content of the M matrices in
Eqn. (1). In practice this guess requires
the explicit construction of many-electron
states in the complementary subsystem
in the first (warm-up) sweepl27-30311 The
simplest option is to encode the Hartree-
Fock determinant and to add white noise
to the reduced density matrix in order to
avoid losing important basis states in the
warm-up sweep.[27] Instead of white noise,
one may apply a perturbative correction.[32]
However, a more involved alternative, the
CI-DEAS protocol3!l may achieve the fast-
est convergence, i.e. requires the smallest
number of sweeps. In the warm-up sweep,
the m most important determinants of the
complementary subsystem (the environ-
ment) are selected such that the entangle-
ment between it and the rest of the system
is maximized. If the first sweep starts at the
leftmost site, the environment corresponds
to the right subsystem in Fig. 1 during the
first sweep. Table 1 shows how two differ-
ent initial guesses affect the convergence
rate in ground-state calculations of the F,
molecule with 14 electrons in 32 active or-
bitals and m=1024.

4.4 Ordering of Orbitals

The ordering of the one-dimensional
chain of orbitals can also have a strong im-
pact on the convergence characteristics of
a DMRG calculation(?732.341 Unfortunately,
there exists no obvious or simple relation

Table 1. Total DMRG electronic energy of F, (with a CAS14,32) converged starting from a Hartree-
Fock (middle column) and a CI-DEAS initial state (right column) All calculations were carried out
with m = 1024 and an internuclear distance of 141 pm. Pre-optimized natural orbitals from a
CASSCF(14,8) calculation were employed. The orbital orderings for the Hartree-Fock guess was
the energetical ordering of the orbitals, while the mutual information had been exploited for the
optimized of the ordering for the CI-DEAS guess.*?%%3¢l Note that for the moderate choice of m =
1024, the converged energies still depend on the initial guess.

Warm-up guess
Sweep 1
Sweep 20 (converged)

Hartree-Fock
—198.886421
—198.970559

CI-DEAS
—198.962112
—198.970711



LaureaTes oF THE SCS FaLL MEeeTinGg 2013

203

CHIMIA 2014, 68, Nr. 4

between the ordering, which determines
which explicitly treated site is consid-
ered next in a sweep, and the convergence
properties of the iterations. Moreover, the
choices of an optimal ordering and initial
guess are intertwined. While a Hartree-
Fock initial state performs well in combi-
nation with an energetical orbital ordering,
the entropy based CI-DEAS initial guess
develops its full potential in combination
with an ordering that tends to group pairs
of orbitals with large mutual interaction
close to each other.[33:35.36]

4.5 Choice of the Number of
Renormalized Subsystem States m

The magnitude of the error introduced
in DMRG by limiting the number of renor-
malized basis states to some fixed number
m may limit the accuracy of a converged
total electronic energy. However, m is cho-
sen by feasibility constraints as the com-
putational effort depends on m. Whether or
not a chosen value for m might introduce
errors can be assessed by inspecting the
eigenvalue spectrum of the reduced den-
sity matrix as this determines the optimum
number m of eigenvectors to be selected
for the decimation step. In practice, calcu-
lations with different values for m may be
extrapolated.[27-3637]

m(

Because the truncation error € tends to
zero if m is increased, the precision of the
obtained energies can be estimated by ex-
trapolating them towards a truncation error
of zero, which corresponds to an unlimited
resource of m. A possible fit function, Eqn.
(2), which works well if m is varied over an
order of magnitude or more, was given by
Legeza et al.3! In Fig. 2, an extrapolation
employing this fit function was performed

Evmre — Ercr

= ) aln(z) + b (2)
Fret

for different ground state calculations of
the F, molecule. From the figure, the es-
timated error is less than 10 microHartree.

Besides extrapolation, the energy fluc-
tuations that occur in two-site DMRG when
the wave function is almost converged also
indicate whether the number of renormal-
ized basis states was chosen sufficiently
large. With increasing m, the difference be-
tween the minimum and maximum energy
obtained within a sweep tends to zero. The
reason for these fluctuations is that the two
explicitly treated sites in between the two
subsystems can combine to produce differ-
ent amounts of entanglement, depending
on their position in the orbital chain. If m
was not limited, no loss of entanglement
would occur and thus no fluctuations ei-
ther. The error in the energy is therefore at
least as large as the fluctuations.

5. Conclusions

Different parameters of the DMRG al-
gorithm determine the accuracy and per-
formance DMRG calculations. As with
other active space methods, the selection
of the orbital basis and the active space
has a strong effect on the quality of results
obtained. However, by contrast to standard
approaches like CASSCF, DMRG involves
another decisive parameter and that is the
number of renormalized states kept on the
active subsystem during the iterations. In
addition, the factors that control DMRG
convergence are the initial guess and the
orbital ordering. Finally, the accuracy of
results can be verified by performing an
extrapolation. All these parameters need
to be reported and kept in mind when
DMRG results are discussed. Hence, the
favorable polynomial scaling of DMRG,
which makes it a true competitor to stan-
dard methods, affords a set of parameters
that need to be well controlled in order to

Fig. 2. F, ground-
state energies for dif-
m=1024 | ferent m as a function
—198.9706 / of the truncation error.
——198.9708
u
:
=_198.9710
8
&
—198.9712
m=2042
—198.9714
-~
m=4006 ,//
mEs191 e
—198.9716 55—
: % I 2 3 4 5
truncation error = le=6

guarantee results exploitable in the study
of spectroscopy and chemical reactivity.
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