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Abstract: The present paper describes an overview of a novel family of tridentate NHC pincer ligand in which
two phenoxide moieties are directly connected to the nitrogen atoms of a central N-heterocyclic carbene. It
was envisioned that such a structure might be suitable for coordination to a variety of metal centers across
the periodic table, including oxophilic metals. Various metal complexes bearing such ligand are indeed readily
accessible in high yields via straightforward routes. Interestingly, a robust zirconium–NHC complex was found
to polymerize rac-lactide in a highly controlled, living and stereoselective manner to afford heterotactic PLA.
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the introduction of substituents in the or-
tho- and para positions of the phenolates
will insure solubility and also disfavor the
formation of undesirable metal aggregates
and (iii) such a NHC tridentate chelating
ligand may be readily modified via the
introduction of saturated or unsaturated
heterocycles (including chiral backbones).
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Fig. 1. General structure of the NHC bis-phe-
nolate ligand.

Ligand Precursor Synthesis

We thus developed a straightforward
synthesis of the corresponding azolium
proligands with bulky substituents (R =
tBu).[4,5] The key step is the coupling be-
tween the 3,5-di-tert-butylcatechol and eth-
ylene diamine to form N,N-bis(3,5-di-tert-
butyl-2-hydroxyphenyl)-ethylenediamine
(Scheme 1).[6] The originality of this ap-
proach is to take advantage of the keto-
enol equilibrium in the starting catechol.
The scope of application is illustrated by
the selected examples depicted in Scheme
1. It is thus possible to access various azo-
lium salts upon changing the nature of
the starting diamine (including the use of
chiral diamine precursors). For instance,
benzimidazolium salts and/or cyclic for-
mamidiniums with a fully saturated back-
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Introduction

Over the past two decades,
N-heterocyclic carbenes (NHC) have at-
tracted tremendous attention and are now
considered as privileged ligands for coor-
dination to metal complexes due to their
exceptional ligating properties.[1] Their
bonding to late transition metals has been
proven to yield kinetically inert, remark-
ably stable as well as air-/moisture-tol-
erant metal complexes, which obviously
contributed to their development. NHC
metal derivatives have found widespread
applications in catalysis and more recent-
ly in medicinal chemistry (antimicrobial
and cytotoxic agents) or material sciences
(luminescence, liquid crystal, conducting
polymer, etc.).[2]

During the mid-90s, the similarities be-
tween N-heterocyclic carbenes and phos-
phines regarding ligand properties were
used as guidelines to study the coordina-
tion chemistry of the NHCs and the poten-
tial applications of the derived metal com-
plexes. As a consequence, the use of NHC
ligands for coordination to early-transition
metals has been much less studied, which
may explain the rather limited number of
NHC early-transition metal complexes
synthesized thus far.

Phosphine ligands display a soft base
nature in the HSAB theory and therefore
are better suited for late-transition metals.
In contrast, N-heterocyclic carbenes have
no necessary requirement for backbond-
ing and, due to the strongly nucleophilic
singlet lone pair, are suitable for a wider
range of metals. However, to limit NHC
dissociation in high-oxidation-state metals
complexes, polydentate NHC-donor sys-
tems have been designed and synthesized
to improve robustness of such coordina-
tion compounds. Potentially bidentate or
tridentate systems, which include a neutral
carbene surrounded by one or two oxygen
or nitrogen-based anionic ligands appear
to be promising candidates to afford stable
early-transition metal complexes.[3]

In search of new tridentate pincer-type
NHC dianionic ligand, we focused our at-
tention on bis-phenolate-NHC chelating
ligand as shown on Fig. 1. We envisioned
that such a L,X

2
-type ligand structure

would be well suited for oxophilic high-
oxidation-state metals. In particular, (i) the
use of phenolate arms would bring a rigid
ligand platform and also avoid potential
decomposition pathways of the ligand; (ii)
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Scheme 1. Synthesis of symmetrical azolium chloride precursors starting from 3,5-di-tert
butylcatechol. Conditions for 1: (i) acetonitrile, ∆; (ii) HClaq., MeOH (iii) (EtO)3CH.
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Application to the Living and
Stereoselective Polymerization of
Cyclic Esters/Carbonates

Biodegradable polyesters and polycar-
bonates, such as polylactide, polycaprolac-
tone or poly-trimethylene carbonate are of
current interest due their various applica-
tions in numerous domains including their
use in the biomedical and pharmaceutical
fields. The ring-opening polymerization
(ROP) of cyclic esters or carbonates consti-
tutes the most efficient approach to access
well-defined polyesters or polycarbonates
in a controlled manner.[13] Typically, the
ring-opening process is driven thermody-
namically by release of the ring strain and
the process may be finely controlled to
access precise molecular weights, narrow
molecular weight distribution and also,
when appropriate, regio- and stereoselec-
tivity. All these parameters are of primary
importance since, in general, a low poly-
dispersity index with a high tacticity level
are prerequisites for such biodegradable
polymers to be commercialized.

Commercial polylactide is currently
produced industrially by ROP of l-lactide
using tin(ii) octanoate.[14] Increasing ef-
forts are being devoted towards the devel-
opment of single-sitemetal-based initiators
to access polymers under the most efficient
conditions. Discrete ligand-supported alk-
oxide complexes of oxophilic metals (Mg,
Ca, Zn, Al or rare-earth metals) are well-
established initiators for the ROP of lac-
tide.[13]Comparatively, group 4 analogues
have been less studied prompting us to
investigate the potential utility of group
4 metal NHC species in this field and, in
particular, to study the added value that the
carbene ligand might provide in this area.

It was thus found that a Ti monoalk-
oxide chloro derivative of type 4 polym-
erizes rac-lactide in a controlled manner

bone are easily accessible. Interestingly,
such azolium chloride salts typically pre-
cipitate during the course of the reaction
and may therefore be easily isolated via
simple filtration with no further purifica-
tion required.

Synthesis of Metal NHC Complexes

Several routes are known for the prep-
aration of NHC complexes.[2] The most
common approach involves the deproton-
ation of an azolium pro-ligand by an exter-
nal strong base to generate the correspond-
ing free carbene with a subsequent binding
to a metal center. The use of an internal
base is also a simple and practical method
to implement since it may avoid the gen-
eration of air- and moisture-sensitive free
carbenes. In that case, a ligand of the met-
al precursor will act as a base and in situ
deprotonate the azolium salt with a direct
complexation onto the metal center. We
found that the alcohol elimination route
involving the reaction of the imidazolium
precursor 1 and one equivalent of a metal
alkoxide precursor allows a straightfor-
ward access (and under mild conditions) to
early transitionmetal complexes supported
by NHC bis-phenolate ligands (Scheme 2).

Using the alcohol elimination ap-
proach, various NHC metal complexes
could be readily produced in high yields
and some representative examples are de-
picted in Fig. 2. The analytically pure va-
nadium (v) oxo complex 2 was prepared
upon combining the corresponding azo-
lium precursor with (OiPr)

3
V=O, followed

by evaporation of the volatiles in vacuo.[7]
The titanium, zirconium and hafnium com-
plexes 3–5 were obtained in the same way
from ClTi(OiPr)

3
, Zr(OiPr)

4
and HfBn

4
,

respectively.[8–10] It is noteworthy that the
NHC bis-phenolate ligand provides a re-
markable stability to the resulting metal
chelates. Complexes 2 and 3 are robust and
could be handled under air. Noticeably,
such a ligand structure can also readily
coordinate mid- and late transition met-
als (with the species 6 and 7) or group 13
metal derivatives (8) (Fig. 2).[7,11,12]

Several molecular structures of these
NHCmetal complexes were determined by
X-ray crystallography, which confirmed
the effective chelation of the NHC bis-
phenolate moiety to the metal center. For
example, as illustrated in Fig. 3, the zirco-
nium atom in complex 4 adopts a distorted
octahedral geometry as a result of the mer
coordination of the ligand.
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Fig. 2. Some representative examples of metal complexes bearing a NHC bis-phenolate ligand of
type 1.

NHC.HCl + M(OR)Ln [NHC]MLn-Cl + R-OH
Scheme 2. Formation
of [NHC]M com-
plexes.

Fig. 3. Molecular structure of the zirconium
complex 4.
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(polydiversity index (pdi) <1.1) albeit with
no stereoselectivity, thus producing atac-
tic polylactide (PLA) (89% conversion to
PLA of 100 equiv. of rac-lactide, toluene,
15 h, 90 °C).[8] Surprisingly, going from
titanium to zirconium led to highly active
systems under mild conditions.[9] The Zr
iso-propoxy chloro derivative of 4 polym-
erizes rac-lactide at room temperature and,
most importantly, in a controlled and high-
ly stereoselective manner to yield narrowly
disperse and highly heterotactic PLA (pdi
<1.1 and P

r
> 0.95, Table 1).[15] In addition,

the direct use of commercial rac-lactide
without further purification has little effect
on the activity and selectivity (commercial
lactide typically contains protic impurities
such as lactic acid). It is worth highlighting
that the prepared polymers were isolated as
semicrystalline materials due to the high
level of the heterotacticity of the produced
PLA.

The good activity and selectivity of the
Zr-NHC complex along with its apparent
robustness encouraged further investiga-
tions of this system to develop its attractive
features for possible industrial application
(i.e. simple and cost-effective catalyst
synthesis, low catalyst cost and low trace
of residual metal in the final product). In
the presence of various alcohols, the Zr-
NHC complex 4 polymerizes rac-lactide
in a controlled and immortal manner to
afford narrowly dispersed corresponding
PLA. Scheme 3 displays some representa-
tive examples. Under these conditions, it is
thus possible to generate well-defined and
tailor-made block copolymers such as am-
phiphilic PEG-PLA, PDMS-PLA or poly-
mers with specific liquid crystal properties
(i.e. PLA with a cholesteryl end group).

Finally, the excellent polymerization
performances of the Zr-NHC initiator 4
were further exploited for the synthesis of
co-polymeric materials. Indeed, block co-
polymers, such as PTMC-PLA [PTMC =
poly(trimethylene carbonate)], hold inter-
est in many applications including bioma-
terials.[16] In particular, the micro-structure
of block copolymers may potentially be
controlled and fine tuned, which in turn
impacts the properties of biomaterials.
Such properties (biological, physical, me-
chanical, degradation…) can be controlled
bymodulating the nature of the block poly-
mers. Also, the tacticity of the PLA frag-
ment is obviously a parameter that will
affect the final properties of the material.
The Zr-NHC complex 4was found to read-
ily polymerize ε-caprolactone (CPL), gly-
colide (GA) or 1,3-trimethylene carbonate
(TMC):[17] it is thus possible to generate
well-defined heterotactic PLA-PCPL,
PLA-PGA or PLA-PTMC (Fig. 4). These
block copolymers were simply prepared
by the initial ring-opening polymerization
of ε-caprolactone, glycolide or 1,3-tri-

methylene carbonate and the subsequent
ROP of rac-lactide to yield well-defined,
molecular-weight controlled and highly
stereoregular heterotactic materials.

Conclusion

The tridentate NHC bis-phenolate li-
gand appears to be a quite versatile and
robust ligand for coordination chemistry
and its applications. The synthetic route of
the ligand precursors is characterized by its
ready synthesis through a three high-yield
step procedure and facile purification. The
preparation of the corresponding NHC car-

bene metal complexes is straightforward
and high yielding. In the case of oxophilic
metals, the alcohol elimination pathway in-
volving the direct reaction of the azolium
precursor with a metal alkoxide was found
to lead to the corresponding complexes in
quantitative yield and no further purifica-
tion may be required.

As envisioned, such a ligand structure
is suitable for coordination to a variety
of metal centers across the periodic table
from group 4 transition metals to group
13 metals, usually giving stable and highly
robust compounds.

The Zr-based NHC complexes ef-
ficiently mediate the controlled stereo-
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Table 1. Ring-opening of rac-lactide initiated by the Zr species 4 (Conditions: CH2Cl2, [lactide]
= 1 M, room temperature).
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selective ring-opening polymerization of
rac-lactide to produce highly chain-length
controlled and heterotactic PLA at room
temperature. Remarkably, these high lev-
els of polymerization control and stere-
oselectivity are unaltered under catalytic
conditions, i.e. in the presence of an excess
of alcohol acting as a chain transfer agent.
These initiators also allowed access to
well-defined and highly heterotactic block
bio-copolymers.
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