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Abstract: Improving the synthesis of complex organic molecules is essential for progress in many fields such
as medicine, agrochemicals or materials. Since 2007, our laboratory has been focusing on the development of
non-classical bond disconnections based on the use of small, energy-loaded organic molecules: hypervalent
iodine reagents and strained rings. In this overview article, we report our progress since 2011 in these areas.
The use of cyclic hypervalent iodine reagents has been extended to the C2-selective alkynylation of indoles, the
domino cyclization alkynylation of allenes, the alkynylation of thiols and the azidation of carbonyl compounds.
Amino-substituted aminocyclopropanes and aminocyclobutanes were used in [3+2] and [4+2] annulations to
access nitrogen-rich building blocks, including nucleoside analogues. The first example of dynamic kinetic [3+2]
annulation of aminocyclopropanes with both enol ethers and aldehydes was also reported.
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Introduction

Improving the synthesis of complex
organic molecules is essential for progress
in many fields such as medicine, agro-
chemicals or materials. Whereas improv-
ing known processes and making them
more efficient and environmental friendly
is certainly an important field of research,
developing new disconnections of chemi-
cal bonds is more challenging, but can
also be highly rewarding. Indeed, new re-
actions often allow several steps to be cut
in a synthetic sequence, accelerating the
discovery of new molecules and making
complete domains of the chemical space
easily accessible. Since 2007, our labo-
ratory has been focusing on the develop-
ment of non-classical bond disconnections
based on the use of small, energy-loaded
organic molecules: hypervalent iodine re-
agents and strained rings (Scheme 1). The
energy gain obtained by breaking weak
hypervalent bonds to make stronger ones
or by strain-release through ring-opening
of small rings allows access to non-con-
ventional synthons with a reversal of the
reactivity normally induced by functional
groups (Umpolung in its broader sense). In
a previous overview article inCHIMIA, we
presented our pioneering work on the use
of cyclic ethynyl benziodoxolone (EBX)
reagents for the Umpolung of alkynes and
the discovery of the first catalytic formal
homo-Nazarov reaction.[1] Concerning
the former, we first introduced the al-
kynylation of ketoesters,[2] electron-rich
aromatic compounds[3] and olefins.[4] For

the latter, we made use of cross-polarized
vinyl-cyclopropyl ketones to access cy-
clohexenones under mild conditions.[5]We
then introduced the use of aminocyclopro-
panes in this process for the synthesis of
indole alkaloids.[6] Herein, we would like
to present our more recent work in these
two areas. In particular, we will show how
we could access differently alkynylated
heterocycles based either on a change of
catalyst or on domino cyclization-alkynyl-
ation processes.[7] We will then describe
the alkynylation of thiols,[8] as well as the
extension of the use of cyclic hypervalent
iodine reagents to the azidation of carbonyl
compounds.[9] In the field of strained rings,
more convergent methods based on annu-
lation reactions of aminocyclopropanes[10]
and -cyclobutanes[11] will be presented, re-
sulting in the efficient synthesis of cyclo-
butyl-, cyclopentyl-, tetrahydrofuryl- and
cyclohexylamines.

Cyclic Hypervalent Iodine Reagents

In our earlier work, we demonstrated
that the alkynylation of heterocycles was
possible with TIPS-EBX (1a) under mild
conditions using a gold catalyst.[3]The re-
action proceeded with high regioselectiv-
ity for the more electron-rich position of
indoles, pyrroles, thiophenes and anilines.
Although the high regioselectivity was
useful, it also constituted a major chal-
lenge if access to heterocycles alkynyl-
ated at other positions was desired. In the
case of indoles, we were able to switch
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work demonstrated that domino-processes
are indeed valuable to access alkynylated
heterocycles difficult to synthesize via a
C–H functionalization approach. Further
investigations are ongoing in our labora-
tory to extend this strategy to the synthesis
of other alkynylated aromatic compounds.

Up to 2013, we had focused on the
alkynylation of C-nucleophiles. We won-
dered if the reaction could also be success-
ful in the case of heteroatoms. Heteroatom-
substituted alkynes are very interesting
building blocks due to their exceptional
reactivity, but they are usually difficult to
access. In the case of ynamides however,
the development of new synthetic methods
has led to their widespread use in organic
chemistry.[13] We were especially inter-
ested in the alkynylation of sulfur, as the
obtained thioalkynes could find broad ap-
plication not only in synthetic chemistry,
but also in chemical biology and materials
science. Nevertheless, this class of com-
pounds is usually accessed using multi-
step procedures under relatively harsh
conditions. One of the major issues when

the regioselectivity from C3 to C2 just by
changing the catalyst from gold to palla-
dium (Scheme 2, products 3a–3c).[7a] The
selectivity may be due to the higher stabil-
ity of the intermediate with the palladium
in the C2 position. Nevertheless, this ap-
proach was applicable only for indoles
for which the electron-rich position is not
adjacent to the heteroatom. In the case of
furans for example, the gold-catalyzed
process also gave C2-alkynylation. In prin-
ciple, if a C3-metallated furan could be ac-
cessed, alkynylation at this position would
become possible. Instead of using a C–H
functionalization method, we wondered
if such an intermediate could be accessed
via a cyclization reaction of allenes devel-
oped by Hashmi and co-workers.[12] The
main challenge in this approach was that
organometallic gold intermediates are no-
toriously difficult to intercept, except with
proton or iodine. We originally hypoth-
esized that a gold(i) catalyst would be ide-
ally suited to promote the desired domino
cyclization-alkynylation process, but none
of the tested catalysts was successful. In
contrast, we found out that gold(iii) pico-
linic acid complex 5was uniquely success-
ful for this process together with modified
hypervalent iodine reagent 1b (Scheme
3).[7b] This points out a further advantage
of cyclic hypervalent iodine reagents: the
easy modulation of their electronic proper-
ties through modification of the group in
trans position to the alkyne. The domino
process was successful for a broad range
of aryl and alkyl substituted allenes (prod-
ucts 6a–6d), as long as no electron-with-
drawing substituent was present on the al-
lene: in this case, solvent addition on the
allene or polymerization dominated. This
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To summarize this part of our research
program, we have further extended the ver-
satility of ethynylbenziodoxole reagents to
diverse alkynylation processes. The use
of other catalysts or domino processes al-
lowed us to access alkynylated heterocy-
cles which could not be synthesized eas-
ily before. The first efficient process was
developed for thiol alkynylation. Different
research groups have also shown that
EBX reagents could be used in other C–H
functionalization processes[18] or the al-
kynylation of carbonyl compounds,[19] to-
syl amides,[20] and radicals.[21] Finally, our
preliminary results obtained for azidation
further confirm that the use of benziodoxo-
lone reagents in organic chemistry has just
started to be investigated, and many more

developing the alkynylation of thiols was
to suppress the competing disulfide forma-
tion, which is especially facile with oxida-
tion reagents. We were pleased to see that
the unique combination of TIPS-EBX
(1a) and tetramethylguanidine (TMG) as
a base led to quantitative alkynylation of
a broad range of aliphatic and aromatic
thiols (Scheme 4, products 8a–g).[8] The
reaction was tolerant to a broad range of
functional groups and could also be ap-
plied to heteroaromatic thiols (products
8h–i), N-unprotected cysteine ester 7j
(product 8j) and peptides (products 8k,l).
The most impressive feature of this reac-
tion is its efficiency: complete conversion
to the alkynylation product was observed
in less than one minute! On a dipeptide, it

was also possible to deprotect the alkyne
and perform a cycloaddition with an azide
to introduce a fluorophore. Current work
in our laboratory focuses on applying the
method to the alkynylation of thiols in bio-
molecules.

Both our work on alkynylation and the
work of Togni’s group on trifluoromethyl-
ation[14] had demonstrated that benziodox-
ole reagents have exceptional properties
for atom-transfer reactions.[15] We won-
dered consequently if the concept could be
extended to the introduction of other func-
tional groups. In this context, we became
particularly interested in azidobenziodox-
ole reagents, which were introduced by
Zhdankin and co-workers and have been

used exclusively for the functionalization
of radicals.[16]We first found that dimeth-
ylbenziodoxole 1c was indeed able to azi-
date cyclic ketoesters without the addition
of any catalyst in nearly quantitative yield
(Scheme 5, product 11a).[9] Nevertheless,
the reaction was not successful in the case
of less reactive acyclic ketoesters or silyl
enol ethers. The use of zinc triflate as cata-
lyst finally allowed the azidation of these
two classes of substrates under mild con-
ditions (products 11b and 12a,b). When
we were working on this transformation,
Gade and co-workers also reported that
azidobenziodoxole 1c could be used for
the enantioselective azidation of cyclic ke-
toesters using a chiral iron catalyst.[17]
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fascinating transformations still wait to be
discovered.

Annulation Reactions of
Aminocyclopropanes and
Aminocyclobutanes

During our early work, we had discov-
ered the exceptional properties of amino-
cyclopropanes in cyclization reactions,
in particular the formal homo-Nazarov
process, and we applied them in the syn-
thesis of indole alkaloids.[6]Although the
strategy developed was highly successful,
the synthesis of the vinylketone amino-
cyclopropanes was challenging and re-
quired several steps, which made it less
attractive. We wondered consequently if
more convergent methods based on an-
nulation processes in which several bonds
would be formed in a single transformation
could be developed. In fact, [3+2] annu-
lation reactions of donor–acceptor cyclo-
propanes have been studied extensively in
the past,[22]yet no example of aminocyclo-
propane was known in this process. This
was highly surprising when considering
the preponderance of cyclopentyl- and
tetrahydrofurylamines in synthetic and
natural bioactive compounds. On the other
hand, the high nucleophilicity of nitrogen
makes the synthesis and manipulation of
donor–acceptor aminocyclopropanes es-
pecially challenging. In 2011, we achieved
a breakthrough in this area by introducing
phthalimido-substituted diester cyclopro-
panes (Scheme 6).[10a]Using a tin catalyst,
the [3+2] annulation with enol ethers pro-
ceeded in high yield and diastereoselec-
tivities to give cyclopentylamines 15a–d.
Later, we were also able to extend the reac-
tion to aldehydes (products 15e,f)[10b] and
ketones (products 15g,h)[10c] as partners
using, respectively, iron trichloride and
tin tetrachloride, as catalysts. The tin-cat-
alyzed processes occurred at low tempera-
ture and were stereospecific, giving access
to enantioenriched products. Nevertheless,
the synthesis of the required enantio-
pure aminocyclopropanes could not be
achieved and the enantiomers were sepa-
rated on a chiral column. This was natural-
ly unsatisfactory, and we wondered if a dy-
namic kinetic asymmetric transformation
(DYKAT) could be developed, in which
racemic aminocyclopropanes would be
transformed into enantiopure cyclopentyl-
amines.[23] Such processes are challenging,
as both interconversion of the enantiomers
and facial selectivity need to be controlled.
We finally reached this goal using copper
catalyst 17 bearing a commercially avail-
able bisoxazoline (BOX) ligand (Scheme
7).[10d] To obtain high enantioselectivities,
it was essential to replace the phthalimido
group by a succinimide. Interestingly, the

[3+2] annulation proceeded in high enan-
tioselectivities not only with enol ethers
(products 18a,b), but also for the reaction
with aldehydes (products 18c,d).

One of the obvious applications for
the cyclopentyl- and tetrahydrofuryl-
amines obtained in the annulation process
is the synthesis of nucleoside analogues.
With more than 45 FDA approved drugs,
this class of compounds is indeed most
important for medicinal chemistry. In
principle, the nucleobase could be elabo-
rated on the nitrogen group using known
procedures after phthalimide deprotec-
tion.[24] Nevertheless, the resulting syn-
thetic sequence would be relatively long.
Furthermore, deprotection of the more
sensitive tetrahydrofurylamines could not
be achieved so far. We consequently won-
dered if the nucleobases themselves could
be used as donor groups on the cyclopro-
pane. Comparison of the pKa values for
phthalimide (9.9) and thymine (8.3) indi-

cated that the two groups may have similar
electronic properties. We were indeed able
to develop a synthesis of thymine, uracil
and fluoro-uracil substituted diester cyclo-
propanes and were pleased to see that they
were good partners in the [3+2] annulation
with enol ethers, ketones and aldehydes
(products 20a–e, Scheme 8).[10e]

So far, we had demonstrated the excel-
lent reactivity of phthalimido diester cy-
clopropanes in [3+2] annulation reactions.
We then wondered if the same reactivity
could be observed for the potentially less
reactive aminocyclobutanes. The synthesis
of the required donor–acceptor substitut-
ed cyclobutanes had never been reported
before and represented an important goal
in itself. In 2013, we discovered that iron
chloride on alumina was an excellent cata-
lyst for the reaction of enimides with alkyl-
idene malonates (products 23a–h, Scheme
9A).[11]The reaction tolerated substituents
on both partners and could be scaled up
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to the multi-gram scale. Finally, the first
example of [4+2] annulation between ami-
nocyclobutane 23a and enol ether 24 was
realized (Scheme 9B). This preliminary
result is highly promising for the develop-
ment of further annulation processes.

To conclude this part, we have dis-
covered that the combination of an imido
donor group with a diester acceptor group
led to a new type of donor–acceptor sub-
stituted small rings, which is uniquely suc-
cessful in [3+2] and [4+2] reactions. These
unique properties have been also recently
used by other groups in [8+3] annulation
reactions of tropones.[25]Many more inter-

esting applications can be expected in the
future, including in the synthesis of natural
and synthetic bioactive compounds.

Conclusion

Since our last report in CHIMIA in
2011, we have progressed in our research
on hypervalent iodine reagents and small
rings to access non-conventional synthons.
New catalyst systems and domino process-
es have led to alternative methods to access
alkynylated heterocycles. A very efficient
and practical method for the alkynylation
of thiols has been developed and the use

of cyclic hypervalent iodine reagents was
also successful for azidation. In the case of
small ring chemistry, we have developed
more convergent annulation methods to
access important building blocks. We are
convinced we have only just started to ex-
plore the potentials of weak hypervalent
bonds and strain rings in synthetic chem-
istry, and many new transformations still
remain to be discovered.
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Scheme 8. Synthesis of nucleoside analogues via [3+2] annulation.
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