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1. Introduction

Molecular dynamics (MD) simula-
tions and cheminformatics are two sub-
disciplines of computational chemistry.
Classical cheminformatics deals with the
development of algorithms for handling,
searching and mining large databases of
small organic molecules, i.e. the focus is
on high-throughput with a two-dimen-
sional, static description of the molecules.
MD on the other hand is typically per-
formed on a single biological system, i.e.
it is low-throughput, three-dimensional
and dynamic. What is common to all ar-
eas of computational chemistry is that the
methodological development is strongly
coupled to the advances in computer pow-
er. MD simulations for example started
out in 1977 with 8.8 picoseconds of bo-
vine pancreatic trypsin inhibitor (BPTI,
58 residues) in vacuum.[1] Afterwards the
increasing speed of the central processing
units (CPUs) pushed the accessible time
scales higher. Parallelization using graph-
ics processing units (GPUs) accelerated
the performance even further, and is now
standardly employed in MD programs.[2–5]
The millisecond simulation of the same

BPTI in explicit water on a special-purpose
supercomputer by the Shaw group in 2009
so far presents the culmination of this de-
velopment.[6] Due to these advances, MD
simulations have started to become fea-
sible for applications in computer-aided
drug design that have previously been out
of reach due to computational limitations.

A similar development can be observed
for areas in cheminformatics and comput-
er-aided drug design. First of all, the size
of the data sets available has been grow-
ing tremendously in the past decade, both
within the pharmaceutical industry and in
the public space. High-throughput screen-
ing routinely employed in industry enables
the testing of 1–5million compounds with-
in a few weeks.[7] PubChem[8] introduced
in 2004 now contains over 50 million com-
pounds and close to 200’000 confirmatory
and primary bioactivity screens with sev-
eral million data points.[9] The current ver-
sion of ChEMBL,[10] version 18, contains
1.5 million compounds with 12 million
activity values extracted from scientific
publications.[11] The advances in computer
power enable the efficient processing and
searching of these large data sets.Machine-
learning (ML) methods are already heavily
used for cheminformatics applications as
will be discussed in detail in the following,
but only with massive computing power do
approaches such as deep learning with arti-
ficial neural networks become meaningful
for bioactivity prediction using these large
data sets.[12]

The advances in computer power also
had a great influence on the method com-
plexity employed in structure-based virtual
screening (VS) or molecular docking. In
VS, new potentially active molecules are
fished for in a large library using known
active molecules as bait.[13] The structure-
based approach uses thereby the known

three-dimensional structure of the protein
and its binding pocket (usually a crystal
structure) to generate docking poses of the
different potential ligands and compare
them using a scoring function.[14–16] In
the early days of docking, both the ligand
and the protein were kept rigid, but with
increasing computer power algorithms
to search the accessible conformational
space of the ligand in the binding pocket
and more sophisticated scoring functions
have been introduced.[17] Now, the focus
has shifted to the efficient treatment of
protein flexibility, which will be discussed
in detail in the following.

Here, several research areas will be
highlighted where the advances in com-
puter power have opened up new oppor-
tunities for cross-fertilization between
different subdisciplines of computational
chemistry.

2. The Hunt for Protein
Conformations

In recent years, the importance of not
only considering ligand flexibility but also
protein flexibility in molecular docking
has been increasingly recognized.[18–23]
The various proposed strategies fall into
four categories, with increasing degree of
protein flexibility included. Firstly, soft-
docking approaches consider only small
local movements of the protein implic-
itly by treating the protein as a soft body,
which can be penetrated to a small degree
by the ligand atoms.[24] In the second class
of methods, the side chain flexibility is
evaluated explicitly while keeping the
backbone rigid, using for example rotamer
libraries.[25,26] In the third category, certain
domains of the protein become flexible,[27]
while methods in the fourth category rep-
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dardly used for TI.[46] Recently a combi-
nation of temperature and Hamiltonian RE
called REST (replica exchange with solute
tempering)[49] was proposed as an alterna-
tive to use with TI calculations. In REST,
the end states (corresponding to λ=0 and
λ=1) are at ambient temperature and the
intermediate states at higher temperature
values with λ=0.5 being the hottest rep-
lica. This enables faster sampling during
the alchemical transformation process,
while keeping the end states unchanged.
Developments such as these in combina-
tion with the advances in computer power
facilitate the accurate estimation of relative
binding free energies of a chemical series
within a practically useful time frame.

5. How Well Does it Dissolve?

The accurate prediction of aqueous sol-
ubility of compounds is an important and
yet unresolved problem in drug discov-
ery.[50,51] A strategy often used is to build
predictive models based on experimental
solubility data using for example simple
descriptors based on the molecular struc-
ture[52,53] or machine learning methods.[54]
Recently, deep learning with artificial neu-
ral networks was applied to the problem of
solubility prediction and exposed the fun-
damental limitations of these approaches
due to noisy experimental data used for
training of the models.[55] The use of FEP
calculations based on MD simulations
would present an alternative approach that
does not depend on experimental data as
input. The thermodynamic cycle for this
involves the ligand in vacuum because
the direct transition between crystal and
solution would require the occurrence
of a dissolving/crystallization event dur-
ing the course of the simulation, which is
not yet feasible.[56–58] A first step towards
solubility prediction by MD is therefore
the accurate estimation of free energy
of solvation in water, i.e. the free energy
difference between the ligand in vacuum
and in solution.[56,59] One important issue
is the requirement to have a fast and ac-
curate way to generate the force field pa-
rameters for the ligands. There have been
many advances during the past decades in
this area. Mobley et al.[59] used the general
Amber force field (GAFF)[60] for ligand
parameters to participate in the SAMPL
blind test[61] containing 52 small drug-
like molecules, and obtained errors of up
to 14 kJ mol–1. In the latest edition of this
blind test, SAMPL4, with 47 molecules,[62]
RMS errors in the range of 5 kJ mol–1 were
found using GAFF,[63] the OPLS-AA force
field,[64] or the GROMOS force field.[65] In
an other study, the latest OPLS force field,
OPLS2.0, has been found to perform bet-
ter than other force fields like OPLS_2005,

resent the full flexibility of the protein by
a conformational ensemble of rigid struc-
tures.[28] Considering the full flexibility of
a protein is of course the most desirable ap-
proach, but also the computationally most
expensive one. Multiple protein conforma-
tions can be obtained, for example, from a
set of crystal structures of the same protein
with different ligands bound,[29,30] but this
implies that the target has been well stud-
ied in the literature such that the necessary
variety of crystal structures is available.
Another source of protein conformations
for docking is the trajectory generated by a
MD simulation. Early examples have been
the docking study of the M603 Fab frag-
ment of immunoglobulin McPC603[31,32]
and of the immunophilin FKBP.[33] Very
recently snapshots from MD simulations
biased towards the experimental crystal
structure were used for docking of cyclin-
dependent kinase 2 (CDK2) and Factor
Xa.[34]This last example indicates that with
the advances in computer power, the use
of MD simulations as a source for protein
conformations for docking on a larger scale
becomes feasible. A general limitation of
ensemble-based docking is, however, the
number of protein structures that can be
used due to combinatorial explosion. This
shifts the focus to the choice of clustering
algorithm used to extract the appropriate
conformations from an MD trajectory, as
well as on the development of alternative
strategies to consider the conformational
ensemble of the protein efficiently.

3. The Happiness of Water

Another problem in docking is posed by
the water molecules in the binding pocket.
The importance of considering them dur-
ing the docking process has been increas-
ingly recognized during the past years and
a large number of strategies have been pro-
posed with varying computational effort,
but all aiming at distinguishing between
‘happy’ water molecules (i.e. displacement
decreases in binding affinity) and ‘unhap-
py’ water molecules (i.e. displacement
increases binding affinity).[35–39] As infor-
mation of the dynamics of the water mol-
ecules in the binding pocket is required for
this analysis, several approaches employ
MD simulations for this task. The popular
commercial program WaterMap[36,40] for
example runs a short MD simulation of the
rigid protein in explicit water to identify
the preferred positions of water molecules
in the binding pocket and subsequently
estimates the enthalpic and entropic dif-
ferences between these water molecules
compared to those in the bulk. A different
approach applied a recently published free
energy perturbation (FEP) method called
enveloping distribution sampling[41,42]

to calculate ∆G between having a water
molecule or a hydrophobic moiety at cer-
tain positions in the binding pocket of a
fully flexible protein.[37] Although many
methods for analyzing water molecules in
binding pockets have been proposed, the
validation of newmethods and comparison
between existing methods remains a major
challenge. Apart from retrospective case
studies, a systematic prospective valida-
tion would be needed.

4. How Well Does it Bind?

The scoring functions used in molecu-
lar docking aim at estimating the absolute
binding free energy, ∆G

bind
, of a ligand,

which is the difference between the free
energy of the ligand in solution and bound
to the protein.[43] As the docking process
contains no information about the dynam-
ics of the system, the accurate estimation
of the entropic contribution to the absolute
binding free energy is a major problem.
MD simulations could in principle provide
this information, but this would require
the occurrence of a spontaneous binding/
unbinding event during the course of the
simulation, which is unfortunately not yet
feasible with unbiased simulations. An al-
ternative approach is therefore to focus on
the difference between the absolute bind-
ing free energy of two ligands, ∆∆G

bind
,

also termed the relative binding free en-
ergy.[44] Here, FEP methods using MD
simulations belong to the most accurate,
but also computationally most demand-
ing approaches. ∆∆G

bind
can be calculated

using the MD simulations by employ-
ing so-called ‘alchemical’ perturbations,
where one ligand is transformed into the
other once in solution and once bound to
the protein.[44]A robust and widely applied
FEP method is thermodynamic integra-
tion (TI), dating back to the work of John
Kirkwood in 1935.[45] In TI, the system is
perturbed in small steps along an artificial
coupling parameter λ, which connects the
two end states, and the resulting curve is
integrated to yield ∆G. The system needs
to be at equilibrium at each λ-step for accu-
rate estimates of ∆G. Thus, sampling can
be an issue in TI calculations – especially
for the protein–ligand complexes. In many
cases though sampling can be improved by
combining TI with the sampling enhance-
ment technique replica exchange (RE).[46]
RE was first introduced in 1997[47] and
two major variants are known. In tem-
perature RE simulations, multiple copies
(replicas) of the system are run in paral-
lel at different temperature values and the
exchange of conformations between cop-
ies is attempted at defined time intervals.
[48] Hamiltonian RE, where the copies are
simulated at different λ-values, is stan-
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8. Conclusions

Despite the many methodological
advances in computational chemistry
achieved during the past decades, many
challenges remain open such as the han-
dling of flexibility, i.e. dynamics, in dock-
ing and similarity search, or the fast and ac-
curate prediction of binding free energies
and free energies of solvation. In addition,
new possibilities for cross-fertilization
between the disciplines of computational
chemistry emerge with the continuous in-
crease in computer power, bringing them
closer together and thus helping to improve
accuracy and applicability.
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