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Abstract: Despite the important growth of ab initio and computational techniques, ligand field theory in molecular
science or crystal field theory in condensed matter offers the most intuitive way to calculate multiplet energy
levels arising from systems with open shells d and/or f electrons. Over the past decade we have developed a
ligand field treatment of inorganic molecular modelling taking advantage of the dominant localization of the
frontier orbitals within the metal-sphere. This feature, which is observed in any inorganic coordination compound,
especially if treated by Density Functional Theory calculation, allows the determination of the electronic structure
and properties with a surprising good accuracy. In ligand field theory, the theoretical concepts consider only
a single atom center; and treat its interaction with the chemical environment essentially as a perturbation.
Therefore success in the simple ligand field theory is no longer questionable, while the more accurate molecular
orbital theory does in general over-estimate the metal–ligand covalence, thus yields wave functions that are
too delocalized. Although LF theory has always been popular as a semi-empirical method when dealing with
molecules of high symmetry e.g. cubic symmetry where the number of parameters needed is reasonably small
(3 or 5), this is no more the case for molecules without symmetry and involving both an open d- and f-shell (#
parameters ~90). However, the combination of LF theory and Density Functional (DF) theory that we introduced
twenty years ago can easily deal with complex molecules of any symmetry with two and more open shells. The
accuracy of these predictions from 1st principles achieves quite a high accuracy (<5%) in terms of states energies.
Hence, this approach is well suited to predict the magnetic and photo-physical properties arbitrary molecules
and materials prior to their synthesis, which is the ultimate goal of each computational chemist. We will illustrate
the performance of LFDFT for the design of phosphors that produces light similar to our sun and predict the
magnetic anisotropy energy of single ion magnets.

Keywords: Density Functional Theory · Ligand Field Theory · Phosphors · Single ion magnets ·
Warm-white light

Introduction

An historical consideration of ligand
field theory can be obtained from ref. [1].
Briefly, this theoretical model was intro-
duced by John Hasbrouck van Vleck more
than eighty years ago, almost simultane-
ously to the crystal field theory of Hans
Bethe.[1] It was a semi-empirical concept
operating with adjustable parameters. The
ligand field theory has also been reviewed
during this time. We consider especially
the Angular Overlap Model (AOM) of
Christian Klixbüll Jorgensen and Klaus
Erik Schäffer[2] being able to bring more
chemical insight on the ligand field con-
cept. The AOM still works with adjustable
parameters but also takes into account the

angular geometry of the metal complex.
Given the important growth of computa-
tional techniques, twenty years ago we
have operated ligand field theory in a
non-empirical way by proposing a theo-
retical model based on Density Functional
Theory.[3] We named this model LFDFT,
as the combination of LF for ligand field
and DFT for Density Functional Theory.
The purpose of the model itself consists in
the explicit treatment of near degeneracy
correlation using ad hoc Configuration
Interaction (CI) within the active space of
Kohn-Sham (KS) orbitals with dominant
d- and/or f-character.[1]This CI treatment is
based on a symmetry decomposition in the
full rotation group and/or on a ligand field
analysis of the energies of all the single de-
terminant (micro-states) arising from this
active space computed by means of DFT.
The computational innovation at this stage
of the development of themodel consists to
the formulation of the multi-determinental

concept in DFT using the approach of
the average of configuration (AOC) type
calculation,[3] i.e. the active space is fun-
damentally distinguished within an AOC
occupation of frozen Kohn-Sham-orbitals
(KS), eventually with fractional occupa-
tions of the d- or f-orbitals. In principle the
proposed model determines the multiplet
energy levels with an accuracy of a few
hundred wave numbers as well as the fine
structure splitting accurate to less than a
tenth of this amount. Therefore the model
has already given satisfactory results for
some customary molecular properties such
as Zero Field Splitting (ZFS),[4]Zeeman in-
teraction,[5] Hyper-Fine Splitting (HFS),[5]
magnetic exchange coupling,[6] shielding
constants,[7] etc.

Recently the LFDFT method has been
extended to handle two-open-shell systems
as it is important in the understanding of
the optical manifestations of lanthanide
phosphors.[8]
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Thus ν
LF

in Eqn. (3) can be rewritten
(Eqn. (5)) and sometimes represented in
the basis of the d- and/or the f-orbitals
(Eqn. (6)) of the metallic center.

(5)vLF r,θ,φ( ) = hkq r( )Ykq θ,φ( )
q=−k
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∑
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2l
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where, a
kq

= <h
kq
>
R
are adjustable pa-

rameters in the conventional ligand field
theory and in the non-empirical LFDFT
(vide infra). They describe the ligand field
interaction. The integration <lm|Y

kq
|l’m’>

are simple coupling coefficients, i.e.
<lm|Y

kq
|l’m’> = ΩdΩY

lm
(Ω)Y

kq
(Ω)Y

l’m’
(Ω).

They can easily be evaluated by numerical
quadrature.

Aiming to provide a practical insight
to those ligand field parameters: h

kq
(r)

(Eqn. (5)) and a
kq
(Eqn. (6)), it is useful to

separate the influence of the ligand field
interaction into two distinct sets: primo
h
00
(r) and a

00
which denote the spherically

symmetry field; and secondo h
kq
(r) and a

kq
with k>0.

The <nl| orbitals in an isolated gas-
eous metal are (2l+1)-times degenerate.
If a spherically symmetric field of nega-
tive charges involving expressions of h

00
(r)

in Eqn. (5) and a
00
in Eqn. (6), is placed

around themetal, these <nl| orbitals remain
degenerate, but all of them are raised in en-
ergy as a result of the repulsion between
the negative charges on the ligands and in
the l-orbitals on the metal ion. This phe-
nomenon is known to be the nephelauxetic
effect. Its consequences are depicted in
Fig. 2.

Considering now the presence of an

We proceed next to a concise descrip-
tion of the LFDFT methodology and final-
ly a couple of typical applications.

The LFDFT Approach

Stricto sensus, ligand field theory is
nothing but the consideration of active
d- and/or f-electrons moving in the po-
tential of a passive chemical environment.
Wesolowski and Warshel,[9] using the
concept of Frozen-Density-Embedding
(FDE), gave a rigorous formulation of this:

(1)

Vemb r( ) =
ρL r'( )
r− r' dr'∫ +VXC ρM r( )"#

+ ρL r( )%&−VXC ρM r( )"# %&+
δTs

nadd ρM ,ρL[ ]
δρM

where the symbols used in Eqn. (1) are
self-explanatory.

In the formulation of the FDE (Eqn.
(1)) only the first term is known, for the
residual terms approximations are needed.
However, the first term corresponds exact-
ly to the approach made by Bethe and Van
Vleck when they developed their ligand
field model.[1] In the ligand field model,
the action of the chemical environment
through an electrostatic perturbation can
be represented in the following:

h = ho + ν
LF

(2)

where ho is the Hamiltonian proper to the
free ion comprising the interactions due to
the kinetic energy, the nuclear attraction
and the spin-orbit coupling of the elec-
trons; and ν

LF
is the electrostatic potential

exerted by the ligand charge density at the
metal center. If ρ(r) is the charge density
due to the ligands together with the whole
chemical environment, one can formulate
the electrostatic potential in the following:

(3)vLF r( ) = −e ρ R( )
R-r dR∫

where e represents the charge of the elec-
tron and the rest of the symbols used in
Eqn. (3) is graphically defined in Fig. 1.

L

L

L
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Fig. 1. Graphical representation of a metal cen-
ter (M) surrounded by four ligands (L).

The term 1/|r-R| in Eqn. (3) can be ex-
panded in a Taylor series to obtain

1
R-r =

1
r>

r<
r>
$

%
&

'

(
)

k
Pk cosω( )

k=0

∞

∑
where, r< and r> are the lesser and the
greater of the distances r andR; and P

k
(x) is

a Legendre polynomial of order k.Without
lack of generality we can assume that r <
R, i.e. considering formally that most of the
density distributions is placed inside this
specific region (r < R). Therefore we write
r< = r and r> = R and obtain the following
(Eqn. (4)):
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where Y
lm
are spherical harmonics.
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Fig. 2. Representations of: a metal ion surrounded by a spherical negative field (a); the influence of the spherical negative field onto the metal d orbit-
als (b); and parameters h00 (in 103 cm–1) with respect to r (in Å).
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(12)V r( ) =
V0 r( ) if r < r0
−
2 Z − N +1( )

r if r ≥ r0

$
%
&

'&

where r
0
is the value of r at which

V0 r( ) = − 2 Z − N +1( )
r ,

i.e. calculated using Eqn. (13):

(13)V0 r0( ) = −
2 Z − N +1( )

r0

Thus, the free-electron exchange ap-
proximation is used only in the interior
region, where it is satisfactory, and the
self-coulomb potential is properly taken
into account at large values of r. The be-
havior ofV(r) at intermediate r is of course
subject to question, and the discontinuous
behavior of

dV
dr

$

%
&

'

(
)
r=r0

is distinctly ‘unphysical’. In spite of its ar-
bitrary character in the neighborhood of r =
r
0
, the modified potential V(r) is decidedly

better than the unmodified potential V
0
(r).

Numerical Solution of the Radial
Wave Equation

The Eigen solutions of the Kohn-Sham
radial wave equation (Eqn. (8)) are ob-
tained using the following procedure. The
radial wave function P

nλ(r) must be 0 not
only at r = 0 but also at r = ∞. In the range
0 < r <∞, P

nλ(r) must possess exactly n-λ-1
nodes.

Usingfinitedifferenceapproximationfor

d2f r( )
dr2

we easily get (Eqn. (14))
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d2f
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(
)
r=ri

≈
2f ri−1( )

ri − ri−1( ) ri+1 − ri−1( )

−
2f ri( )

ri − ri−1( ) ri+1 − ri−1( )
−

2f ri( )
ri+1 − ri( ) ri+1 − ri−1( )

+
2f ri+1( )

ri+1 − ri( ) ri+1 − ri−1( )
+ ε δr3( )

where r
i
are points on the radial grid. A

convenient choice for the radial mesh is
given by r

k
= c(ekh –1) where h = 0.14,

c = 0.000852 and k
max

= 125. These val-
ues were simply obtained by trial and er-
ror. The Matlab script XATOM allows to
perform the calculation. To illustrate this,
Table 1 and Fig. 4 show the results of an
XATOM calculation for a lanthanide Gd3+

for example.

octahedral ligand field for instance, i.e.
six ligands are located on the vertices of
an octahedron (+x, –x, +y, –y, +z and –z
axes respectively) and allowed to interact
onto themetal center, the degeneracy of the
d orbitals is removed governed by simple
group theory rule. The expression of the
spherically symmetric field (Fig. 2) is no
longer sufficient and the d orbitals which
are lying along the x, y and z axes (i.e. d

x2–y2
and d

z2
orbitals) will be destabilized more

than the orbitals which are lying inbetween
the axes (i.e. d

xy
, d

xz
, d

yz
). In Fig. 3 we show

the full action of an octahedral ligand field.
The ligand field potential in the case of an
octahedral complex is the following:

(7)

VOh
= −

3
2 Δ oY4−4 −

5
2 Δo Y40

−
3
2 Δo Y44 + tr m VOh

m '( )

where, only one parameter prevails i.e. ∆
0

the energy difference between the e
g
(d

x2–y2
and d

z2
orbitals) and t

2g
(d

xy
, d

xz
, d

yz
) orbitals

(cf. Fig. 3).
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Fig. 3. Splitting of the d orbitals according to
an octahedral ligand field.

Before getting straight to the topic of
interest, i.e. ligand field theory, the predic-
tion of the electronic fine structure of open-
shell systems requires first the wave func-
tion of the free metal ion.A simple method
to solve the atomic Kohn-Sham equation
is proposed, the Matlab codes (XATOM)
are available from the author upon request.

Method to Solve the Atomic Kohn-
Sham Equation Numerically

For a free metallic ion, the radial Kohn-
Sham wave functions can be written in the
following form (Eqn. 8):

(8)
−
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#
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%
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Pnλ r( ) = EnλPnλ r( )

where P
nλ(r) = rR

nλ(r) are normalized ra-
dial wave functions, i.e.

Pnλ r( )[ ]2dr
0

∞
∫ =1 ;
and V(r) is the sum of the nuclear coulomb
potential, the total electronic coulomb po-
tential, and the exchange potential. One
will tentatively set V(r) equal to V

0
(r) at all

values of r, where V
0
(r) is defined as fol-

lows (Eqn. (9)):
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where Z is the atomic number; and

ρ r( ) = σ r( )
4πr2

is the spherically averaged total electronic
charge density (both spins). It is notewor-
thy to highlight that the electronic coulomb
potential is expressed in terms of σ(r),
which is the total electronic charge density( )σ r( ) = ωnλ Pnλ r( )[ ]2

nλ
∑ ;

and the free-electron exchange potential in
terms of ρ(r). Both distances and energies
are measured in atomic unit, i.e. in Bohr
units and in Rydberg units, respectively.
ω
nλ is the occupation number for the or-

bital nλ (both spins). In the special case of
a closed shell,ω

nλ= 2(2λ + 1). More gener-
ally, the total number of electrons and the
ionicity can be obtained from Eqns. (10)
and (11), respectively.

(10)N = ωnλ
nλ
∑

q
ion
= Z – N (11)

Unfortunately, the free-electron ap-
proximation breaks down at large distanc-
es from the nucleus. This observation has
been made more than half of a century ago
by R. Latter.[10]His essential idea was to re-
defineV(r) so that it has the correct asymp-
totic behavior at large r. Let us consider an
atom or ion with atomic number Z contain-
ing N electrons. Let the above-defined po-
tential be denoted by V

0
(r), and let us call

this the unmodified Kohn-Sham potential.
Let us denote by V(r) the potential that is
actually introduced into the wave equation
and let us call this the tail-corrected Kohn-
Sham potential. We shall now define V(r)
in terms of V

0
(r) as follows (Eqn. (12)):
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Next we describe the calculation of the
electrostatic multiplets.

Multiplet Calculation
The multiplet wave ψ

i
that belongs to

a given configuration α arising from an
electron configuration ln (ψ

i
= |α L M

L
S

M
S
〉) are obtained by solving the secular

equation H C = C E taking as basis all the
Slater-determinants in the model space, i.e.

Ψi = Ciµ Φµ
µ

∑ .

L is the label of the angular momentum
(irreducible representation, irreps) of the
space part of the wave function; M

L
refers

to its component in case of degeneracy, S
is the spin part of the wave function with
component M

S
; Hµν = <Fµ|H0

+G
12
|Fν>; Φµ

= |χ
1
χ
2
χ
3
…is a N-electron wave func-

tion of spin-orbitals χ
1
, χ

2
, χ

3
, … ; and

C
iµ is an orthogonal square matrix of the

Eigenvectors. For a particular χι we have
χ
1
= |l m

l
s m

s
〉
k
. This task is best achieved

automatically in a computer program. The
procedure is briefly described next.

The matrix elements Hµν can be easily
obtained from Slater’s rules for a single
determinant as a sum of coulomb and ex-
change integrals (ignoring the constant
one-electron part for the determinants of a

single configuration originating from H
0
)

as given in Eqn. (15) where G = 1/r
1
.

Thus we are finally left with the task to
evaluate the one-center two-electron elec-
trostatic matrix elements < χ

a
χ
b
| g | χ

c
χ
d
>

= < l
a
m

a
l
b
m

b
|g| l

c
m

c
l
d
m

d
> δ

sa,sc
δ
sb,sd

since
there is no spin contribution to the electro-
static repulsion. Moreover, the electrostat-
ic repulsion operator is most conveniently
written as Eqn. (16) where like in Eqn. (4),
r< and r> become the lesser and the greater
of the distances r

1
and r

2
of two electrons

from the nuclei.
Considering a specific two-electron

integral 〈l
a
m

a
(1)l

b
m

b
(2)|g|l

c
m

c
(1)l

d
m

d
(2)〉,

where m
a
, m

b
, m

c
and m

d
denote the cor-

responding components of a l
a
-orbital or a

l
b
-orbital etc. (Eqn. (17), Eqn. (18)).
The parameters W

k
are the radial inte-

gral of the atomic wave functions. They are

Table 1. XATOM calculation for Gd3+

Output:Energiesaregiven inRydbergunits.

converged

ekin
enuc
ecoul
exc
etot

= 21608
= –51386
= 8511.8
= – 451.36
= –21718

s-orbitals (energy versus occupation)
–3464.9
– 552.22
– 122.37
– 24.37
– 3.2522
– 0.32733

2
2
2
2
2
2

p-orbitals (energy versus occupation)
– 520.84
– 109.03
– 19.265
– 1.8872

6
6
6
6

d-orbitals (energy versus occupation)
– 85.598
– 10.584

10
10

f-orbitals (energy versus occupation)
– 0.48387
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Fig. 4. Graphical representations of the potential (a); the density (b); and the radial wave functions Pnλ (c) obtained by X-atom calculation of lantha-
nide Gd3+.

(15)Φµ G Φν =

0 if Φµ ≠ Φν by more than two spinorbitals
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t
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rigorously known as the Condon-Shortley
radial parameters or simply the Slater-
Condon or Racah parameters and can be
adjusted to experimental data or calculated
from first principle (Eqn. (18)). In this latter
case, it is essential to use radial functions
that are properly corrected for the neph-
elauxetic effect afore-mentioned. In Fig.
5, one can illustrate the expansion of the
radial 5d and 4f functions for various Pr-
halides complexes for instance. The A

k
’s

are Gaunt integrals and are just numbers
that are easily calculated. In fact very few
A

k
’s are non-zero since the triangle condi-

tion and the even lower index rule must ap-
ply for both Clebsch-Gordan coefficients
(Eqn. (18)). The electrostatic two-electron
integral <ab|cd> will vanish if there is no k
value for which these conditions are met.

Effective Ligand Field Hamiltonian
Following the effective Hamiltonian

approach, let us consider the KS orbitals
dominated by l-functions, which result
from anAOC lnDFT-SCF calculation. This
yields 2l+1 eigenvalues ε

i
and eigenvectors

Ui . From the components of this eigenvec-
tor matrix built up from such MOs one
takes only the components correspond-
ing to the l-functions. Let us denote this
(2l+1)×(2l+1) square matrix composed of
the new column vectors byU and introduce
the overlap matrix S:

S = UUT (19)

Since U is in general not orthogonal,
we use Löwdin’s symmetric orthogonal-
ization procedure to obtain an equivalent
set of orthogonal eigenvectors (c):

(20)c = S
1
2U

We identify now these vectors as
the Eigenfunctions of the effective LF
Hamiltonian

hLF
eff sought, as

(21)φi = cµi µ
µ=1

2+1
∑

This procedure will enable us to esti-
mate the full representation matrix of

hLF
eff

(Eqn. (22)) as

(22)hµν = µ
hLF

eff ν = cµi εi cνi
µ=1

2+1
∑

Relativistic Corrections: The ZORA
Equation for Atoms

The spin-orbit splitting is already pres-
ent in the zeroth order Hamiltonian. This
spin-orbit term is regular because of the
(2c2–V)–2 factor in it. It poses no problem
in variational calculations. The Eigenvalue
equation:

(23)
H zoraΦzora

= V +

σ ⋅
p c2
2c2 −V


σ ⋅
p

$

%
&

'

(
)Φzora = E zoraΦzora

is only a second-order differential equation
(cf. Eqn. (22)). The two-component wave
functionΦzora will now be referred to as the
ZORA wave function.

SCF Calculations
We discuss first the construction of the

potentialV(r) in the Hamiltonian Hzora from
the one-electron solutions to Dirac’s equa-
tion above during the iterations of a SCF
calculation. In the present work the simple
Xα version of DFT is used for the sake of
simplicity. The electron-electron potential
V

ee
is thus split in the classical Coulomb in-

teraction V
C
and the exchange-correlation

potential V
xc
. Magnetic effects and retar-

dation are not taken into account for the
electron-electron potential. The potentials
are calculated from the electron density ρ
in the following way (Eqn. (24)):

V = V
N
+ V

ee
= V

N
+ V

C
+ V

xc
(24)

cf. Eqn. (25) where the different terms are
explicitly given.

(25)

VN
r( ) = − Z

r

VC
r( ) =

ρ
r2( )

r − r2
dr2∫

VXC
r( ) =VXC ρ( ) = −3α 3

8π ρ
r( )

"

#$
%

&'

1
3

with α = 0.7. The Dirac equation with this
approximation for the exchange-corre-
lation potential is called the Dirac-Slater
equation.

Separation of the Radial Variable
from Angular and Spin Variables

To solve the equations for an atom
it is useful to separate variables just like
in the non-relativistic case. Here we fol-
low the standard approach, which can be
found in any text book on relativistic ef-
fects. Because the potential of an atom
is spherically symmetric, the total angu-
lar momentum


j =

l + s of a particle is

conserved.

j commutes with the ZORA

Hamiltonian, so we may construct simul-
taneous Eigenfunctions of Hzora, j2 and j

z
.

The Eigenfunctions can also be classified
according to parity. It is convenient to in-
troduce the operator (Eqn. (26))

(26)κ̂ =

σ ⋅

l +1 = σ ⋅

r × p( )+1

Eigenfunctions of this operator are written
as ηκ

m with eigenvalue –κ (Eqn. (27))

(27)κ̂ηκ
m = −κηκ

m

These are functions of angular and spin
variables with a definite parity. The rela-
tivistic quantum number κ is given (Eqn.
(28)) by:

(28)κ =

− l +1( ) = − j + 1
2

$

%
&

'

(
) j = l + 1

2

+l = + j + 1
2

$

%
&

'

(
) j = l − 1

2

$

%

&
&

'

&
&

ηκ
m
is explicitly given by (Eqn. (29)):

(29)ηκ
m = lm ' sms jm Ylm 'θsms

m ', ms

∑

Fig. 5. Graphical representation of the radial functions of the 4f (left hand side) and 5d (right hand
side) Kohn–Sham orbitals of the free Pr3+ ion (in red) and the complexes (PrF8)

5– (in blue), (PrCl8)
5–

(in magenta) and (PrBr8)
5– (in green), forming a D4h arrangement.
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In this equation m = m’ + m
s
holds and

θ
sms

is the Eigenfunction of S2 and S
z
.

One can now separate variables. Writing
Φ= R r( )ηκm it is possible to calculate
σ ⋅
pΦ (Eqns. (30) and (31)):

(30)σ rηκ
m = −ηκ

m; σ r
2 =1σ r ≡


σ ⋅
r

r ;

(31)

=σ r
1
r
r ⋅ p+ 1r


σ ⋅ (r × p)$

%
&

'

(
)Φ

=σ r −i ∂
∂r +

i
r

σ ⋅

l$

%
&

'

(
) R(r)ηκm( )

=σ r −i ∂R
∂r − iκ +1r R$

%
&

'

(
) ηκ

m

= i ∂R
∂r +

κ +1
r R$

%
&

'

(
) η−κ

m


σ ⋅
pΦ=σ r

2 σ ⋅
pΦ=


σ ⋅
r

r


σ ⋅
r

r

σ ⋅
p$

%
&

'

(
)Φ

Now it is possible to separate the spin
and angular variables from the radial vari-
able in the ZORA-Slater equations, be-
cause the


σ ⋅
p operator appears twice. The

first one will give something proportional
toη−κ

m the second one will give back some-
thing proportional to ηκ

m.
Due to the separation of radial from an-

gular and spin variables, the Dirac-Slater
and the ZORA-Slater equation can be
solved numerically. This will be done for
the d- and/or f-elements using our atomic
Kohn-Sham solver.

To solve the ZORA-Slater equation for
atoms, one needs to calculate the following
matrix elements:

Φi Φ j ; Φi V Φ j ;
1
2 Φi


σ ⋅
p f σ ⋅

p Φ j

f = 1
1−V 2c2

where Φi = Ri r( )ηκi
mi ;

The first two are the same as in the non-
relativistic case. The last one can be writ-
ten as (Eqn. (32)):

(32)
1
2 Φi


σ ⋅
p f σ ⋅

p Φ j =
1
2δmi m j

δκiκ j

×
∂Ri
∂r +

κ +1
r Ri

$

%
&

'

(
)⋅

∂R j
∂r +

κ +1
r R j

$

%
&

'

(
) f r2 dr

0

∞

∫

Because f = (1–V/2c2)–1 depends on
the potential, it is convenient to do a nu-
merical integration. In order to solve the
ZORA-Slater equations, one can use the
same techniques as in the non-relativistic
case e.g. in XATOM. Table 2 illustrates the
relation between κ and |lj〉

Example 1: Calculation of the
Magnetic Anisotropy of Single Ion
Magnets

It has long been recognized that met-
al spin states play a central role the new
technologies, in the reactivity of important
biomolecules, in industrial catalysis and in
spin crossover compounds. The latter of-
fer many exciting possibilities for novel,
switchable materials with applications
in computer storage and display devices.
Elucidating the role and effect of different
spin states on the properties of a system
is presently one of the most challenging
endeavors both from an experimental and
theoretical point-of-view.

Considering tetraphenylarsonium
pentakis(nitrato)ytterbate(iii)[11] as a pro-
totype for Single Ion Magnets (SIMs),
we present methodological advances and
state-of-the art computations analyzing
the electronic structure and its relationship
with the magnetic properties due to the
Yb(iii) ion. Fig. 6 represents its structure.

The results of the quantum chemical
calculations are quantitatively decrypted in
the framework of Ligand Field (LF) theo-
ry, extracting the full parametric sets and
interpreting in heuristic key the outcome.
An important result is the characterization

of the UV-Vis spectra and of the magnetic
properties in the ground and excited states.
We use the methodology described above.
The ground state is characterized by a large
anisotropy of the g-tensor and the excited
states by the optical spectra. The predict-
ed and observed findings are in excellent
agreement.

Description of our Results
First we perform a DFT calculation of

the above-mentioned molecule by occupy-
ing the M.O. with dominant f-character
equally, i.e. 13/7 in each. The M.O. ener-
gies and the corresponding Eigenvectors
thus obtained are listed in Table 3 (only the
dominant metallic contribution is given):

Next, we use the effective Hamiltonian
method to calculate the LF-matrix (Table
4; units are 103 cm-1):

And in Table 5 we give the equivalent
multipolar representation of the LF:

A ZORA calculation yields the spin
orbit coupling constant ζ

4f
(ZORA = 3’280

cm–1; the calculated orbital reduction fac-
tor is k

orb
= 0.908, thus ζ

4f
= 0.91*3’280

= 2’980 cm–1. Using this spin-orbit cou-

Table 2. κ-Blocks

s
1/2

k = –1 p
1/2

κ = 1 d
3/2

κ = 2 f
5/2

κ = 3

p
3/2

κ = –2 d
5/2

κ = –3 f
7/2

κ = –4

Table 3. a) M.O. energies of the metallic f-
orbitals; b) Eigenvectors corresponding to the
Eigenvalues in Table 3a.

a)

MO# energy occ

30 –13.743 1

31 –13.780 2

32 –13.810 2

33 –13.821 2

34 –13.825 2

35 –13.853 2

36 –13.855 2

b)

4b 3b 3a 2b 2a 1b 1a

4f-3 0.0000 0.0000 0.1917 0.0000 –0.7869 –0.0000 –0.5633

4f-2 –0.0000 0.0000 0.5759 0.0000 –0.3509 0.0000 0.7183

4f-1 0.0000 0.0000 0.7550 –0.0000 0.4683 –0.0000 –0.4060

4f_0 –0.0022 0.8522 –0.0000 –0.2875 –0.0000 0.3276 0.0000

4f+1 0.3047 0.1399 –0.0000 –0.4487 –0.0000 –0.8109 0.0000

4f+2 –0.5479 –0.2759 0.0000 –0.7245 –0.0000 0.1241 –0.0000

4f+3 0.6851 –0.2842 0.0000 –0.3844 –0.0000 0.4628 –0.0000

Fig. 6. Structure of Yb(NO3)5
– (color code: Yb in

green, N in blue and O in red).
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pling constant, the following energies of
the seven Kramers doublets (Table 6) are
obtained:

Table 6. Energies of the Kramers doublets of
Yb(NO3)5

–

Spinor state E
pred

[cm–1] E
obs
[cm–1]

E’(2F
7/2
) 0 0

E’(2F
7/2
) 146 12 (outlier?)

E’(2F
7/2
) 255 60

E’(2F
7/2
) 461 270

E’(2F
5/2
) 10’582 10’438

E’(2F
5/2
) 10’636 10’534

E’(2F
5/2
) 10’759 10’604

We analyze the Zero Field Splitting
using the conventional effective Spin
Hamiltonian (Eqn. (33)):

ĤZFS
eff = D Sz

2 −
1
3S S +1( )

"

#$
%

&'
+E Sx

2 − Sy
2"

#
%
&
(33)

The best fit yields: D = 33.78 cm–1; E =
7.85 cm–1, error

max
= 6.1 cm–1, whichmeans

that the magnetic anisotropy is quite large.
Moreover, we can easily calculate the

Zeeman splitting: ĤZe = korb

L + 2.0023


S

that is usually analyzed in terms of an effec-
tive Spin-Hamiltonian: ĤZe

eff =

H ⋅g ⋅


S eff

This yields the following g-tensor in the
local frame (Table 7). However, in experi-
mental measurements, the diagonal part of
the symmetrized square gsym

2 = g ⋅gT is ob-
served (Table 7b). Experimentally it is pos-
sible to measure the angle ∆φ between the
indicated g direction and the a crystal axis
in the ac plane. Thus, we give Eigenrotation
that diagonalizes g2 in Table 7c.

Table 7. a) g-tensor of Yb(NO3)5
– in the local

frame; b) Symmetrized g-tensor of Yb(NO3)5
—;

c) Eigenvectors that diagonalizes the
symmetrized g-tensor in the local frame in a)

a)

x z y

–2.3684 –0.0000 0.0472

–0.0000 2.5308 0.0000

–2.7615 –0.0000 4.1083

b)

gsym =
1.8592 0 0

0 2.5308 0
0 0 5.1632

"

#

$
$
$

%

&

'
'
'

c)

c =
0.9524 0 0.3047

0 1 0
−0.3047 0 0.9524

"

#

$
$
$

%

&

'
'
'

From this we obtain angle ∆φ
pred

= cos–1

(0.9524).180/π = 17.75o (∆φ
obs

= 25o±5o).
These results are displayed in Table 8.

Finally, in Fig. 7 we give the electronic
spectrum and energy level diagram ofYb3+

in [(C
6
H

5
)
4
As]

2
Yb(NO

3
)
5
.

Example 2: The Prediction of
Future Domestic Lighting[12]

We consider here the optical properties
of the Pr3+ ion embedded into various solid-
state fluoride host lattices, for the prospec-
tion and understanding of the so-called
quantum cutting process, being important
in the further quest of warm-white light
source in light emitting diodes (LED). We
use LFDFT as described abundantly in the
methodological part including the calcula-
tions of the Slater–Condon parameters, the
ligand field interaction and the spin–orbit
coupling constants, important for the non-
empirical prediction of future domestic
lighting. The model is intended to contrib-
ute to the design of modern phosphors and
to help to complement the understanding
of the 4fn → 4fn–15d1 transitions in any lan-
thanide system.

Next, we calculate the Slater–Condon
parameters directly from the radial func-
tions of the 4f and 5d Kohn–Sham orbit-
als. We report here the reliable prediction
and understanding of the 4fn → 4fn–15d1

transitions considering luminescent mate-
rials like Pr3+-doped fluoride host lattices,
in order to provide a prospective descrip-
tion of the optical behavior of modern
warm-white light phosphors. Various
fluoride host lattices doped with Pr3+ ion
are investigated taking into account the
local symmetry of the lanthanide center
together with its coordination sphere, as

Table 4. Ligand-Field matrix of Yb(NO3)5
–

〈 f
m
|V

LF
| f
m’
〉 = [0.1700;

0.1123; 0.1596;

–0.0367; 0.1268; 0.2755;

0; 0; 0; 0.5126;

0; 0; 0; 0.1126; 0.1787;

0; 0; 0; –0.0963; –0.1101; 0.5184;

0; 0; 0; –0.1284; 0.2349; –0.2605; 0.5892]

Table 5. Multipolar representation of the Ligand Field of Yb(NO3)5
– (term of akq cf. Eqn. (6)).

a
00
= 0

a
2q
= [0 0 –41.8 –69.6 –39.2]

a
4q
= [0 0 0 0 85.5 173.6 158.0 63.3 –29.6]

a
6q
= [0 0 0 0 0 0 222.0 112.4 –189.8 –291.8 370.5 –372.8 296.5]

Table 8. Predicted and experimental principal g-values and directions for [(C6H5)4As]2Yb(NO3)5

Predicted g-value Observed g-value Predicted ∆φa Observed ∆φa

g
1

5.16 5.48 ± 0.03 108 115 ± 5

g
2

2.53 2.45 ± 0.03

g
3

1.86 1.76 ± 0.02 18 25 ± 5

a∆φ the angle between the indicated g direction and the a crystal axis in the ac plane
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well as the availability of optical spectra.
Hence, a special emphasis is addressed to
systems, which have been experimentally
investigated before, in order to validate the
theoretical approach. In this respect, we
choose Pr3+ coordinated with eight fluoride
ligands as experimentally observed in the
following systems: CaF

2
:Pr3+, KY

3
F
10
:Pr3+,

BaY
2
F
8
:Pr3+ and LaZrF

7
:Pr3+, where the

eight fluoride ligands form arrangement
with O

h
, C

4v
, C

2
and C

1
symmetry, respec-

tively (Fig. 8).

Fig. 9 shows the predicted LF-splittings
in the various environment.

Finally Fig. 10 shows the result of our
prediction: (a) and (c) are not quantum cut-
ters, whereas (b) and (d) are. It is interest-
ing to note that in this latter case there will
be two photons emitted for on absorbed
high-energy photon. The theoretical quan-
tum yield is two. The electrostatic matrix-
elements elements are obtained consider-
ing the nephelauxetic effect already de-
picted in case of fluoride ligands in Fig. 5.

Conclusion

The best light source alternative after
the banishment on incandescent light bulbs
is certainly obtained within simple, inex-
pensive and energy efficient technology.
LED lighting is undoubtedly the future of
our domestic lighting. One usually judges
the efficiency of the LED with respect to
the optical manifestation of the inorganic
phosphorus which is used. These inorganic
phosphorus compounds, currently based
on the doping of lanthanide ion into stable
crystal host lattices, gives suitable visible
light emission necessary to the generation
of warm-white light. As written, nowadays
LED lighting is not only understood by the3+

Fig. 7. Single-crystal
electronic spectrum
and energy level
diagram of Yb3+ in
[(C6H5)4As]2Yb(NO3)5.
The energies were
adjusted using the
Angular Overlap
Model and are almost
identical to our calcu-
lated ones.

Fig. 8. Structure and spatial representation of the eight coordinated Pr3+ complexes being inves-
tigated in the present work, resulting from Pr3+ doped into: CaF2 (a), KY3F10 (b), BaY2F8 (c) and
LaZrF7 (d) forming a local symmetry of Oh, C4v, C2 and C1 point groups, respectively.

Fig. 9. Calculated energy splitting in cm–1 of the 4f (left hand side, in red) and the 5d (right hand side, in blue) orbitals of Pr3+ due to ligand field inter-
action in the system: CaF2:Pr

3+ (a), KY3F10:Pr
3+ (b), BaY2F8:Pr

3+ (c) and LaZrF7:Pr
3+ (d). The irreducible representations of the point group under which

the local structures of the Pr3+ impurity belong, are also indicated.
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analysis of the f - d dipole allowed transi-
tions in the lanthanide system, but also lim-
ited to the bluish cold-white light emission
of the Ce3+-based LED bulbs.

Lanthanides like Pr3+ and Eu2+ are al-
ready undeniably conceived as activators
of warm-white light source, ergo solution
for the improvement of LED technology.
However, the development and engineer-
ing of such a technology are still com-
plex, relying on the perfect understanding
of the 4fn → 4fn–15d1 transitions. In this
paper, we present a fully non-empirical
determination of the 4fn → 4fn-15d1 transi-
tions in lanthanide doped into crystal host
lattices; in order to understand the optical
manifestation of new generation of LED
phosphors. The method is particularly ap-
plied to understand the phenomenology

of quantum cutting process in the optical
properties of Pr3+-doped into various fluo-
ride lattices. We address the problem in a
transparent and clear approach, taking ad-
vantages of the facilities given by ligand
field theory in conjunction with modern
quantum chemistry tools. The proposed
LFDFT shows here to be a useful tool,
providing reliable and accurate predic-
tions in the perspective to design the op-
tical properties of materials by Density
Functional Theory.

Also the analysis of the optical
and ESR spectra of low-symmetrical
[C

6
H

5
)
4
As]

2
Yb(NO

3
)
5

we have clearly
demonstrated that it is not needed to as-
sume idealizedhighsymmetry.TheLFDFT
model has shown to be a valuable tool for
the interpretation of the spectral and mag-

netic properties of low-symmetry rare-
earth complexes. The predicted values for
the EPR parameters and for the Zero Field
Splitting of the Kramers doublets gives a
valuable insight into chemical bonding be-
tween rare-earth ions and ligand ions.
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Fig. 10 Calculated
multiplet energy lev-
els in cm–1 obtained
for Pr3+ doped into
CaF2 (a), KY3F10 (b),
BaY2F8 (c) and LaZrF7

(d). The energies of
the terms originat-
ing from the ground
electron configuration
of Pr3+ (4f2) are in red,
those for the excited
configuration (4f15d1)
are in blue.


