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Abstract: We introduce property-independent kernels for machine learning models of arbitrarily many molecular 
properties. The kernels encode molecular structures for training sets of varying size, as well as similarity measures 
sufficiently diffuse in chemical space to sample over all training molecules. When provided with the corresponding 
molecular reference properties, they enable the instantaneous generation of machine learning models which 
can be systematically improved through the addition of more data. This idea is exemplified for single kernel 
based modeling of internal energy, enthalpy, free energy, heat capacity, polarizability, electronic spread, zero-
point vibrational energy, energies of frontier orbitals, HOMO-LUMO gap, and the highest fundamental vibrational 
wavenumber. Models of these properties are trained and tested using 112,000 organic molecules of similar size. 
The resulting models are discussed as well as the kernels’ use for generating and using other property models. 
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1. Introduction

Strategies for solving computational 
chemistry problems have evolved in par-
allel with the capacity and abundance of 
computer hardware.[1] Access to ever-
increasing compute power available at 
centralized computer facilities, such as the 
sciCORE at the University of Basel, the 
Swiss National Supercomputing Centre 
or the Argonne Leadership Computing 
Facility, enable ‘Big Data’ driven compu-
tational chemistry which no longer relies 
on experimental data for training and vali-
dation, but rather on virtual data, obtained 
through predictive modeling and massive 
simulation efforts. Statistical inference 
from Big Data holds great promise in ma-
ny scientific domains, including biology,[2] 
climate research,[3] high-energy physics,[4] 
or photonics.[5] Due to their unrivaled com-

putational efficiency (typical execution 
time is milliseconds), data driven models 
of molecular property predictions become 
relevant as soon as they reach the accuracy 
of well established deductive quantum 
chemistry methods for solving approxi-
mations to the electronic Schrödinger 
equation, such as Hartree-Fock, Density 
Functional Theory (DFT), or Coupled-
Cluster methods.

For the ‘supervised learning’ task[6] of 
inferring a molecular property from struc-
ture–property dyads provided a priori, 
machine learning (ML) algorithms have 
very recently been shown to reach desir-
able quantum chemical accuracy, even 
when predicting properties for new (out-
of-sample) molecules which had no part 
in training.[7–11] These developments have 
also triggered studies on transition state di-
viding surfaces,[12] orbital-free kinetic den-
sity functionals,[13] electronic properties 
of crystals,[14] transmission coefficients 
in nano-ribbon models,[15] or densities of 
states in Anderson impurity models.[16] 

In order to establish a consistent dataset 
for which ML models can be improved 
systematically through the addition of 
more data, we recently published com-
puted DFT structures and multiple prop-
erties of 134,000 organic molecules.[17] 

Within a previous study,[18] discussed at 
the Swiss Chemical Society Fall Meeting 
in 2014, we used some properties of this 
dataset to investigate the ∆-ML approach 
that augments less expensive deductive 
baseline theories by inductive ML models, 
trained on the baseline’s deficiencies. We 

demonstrated that chemical accuracy can 
be reached within this ∆-ML approach, as 
well as strong transferability when applied 
to all the 134,000 molecules. Here, we in-
vestigate the use of property-independent 
kernels for the simultaneous modeling of 
multiple properties taken from the same 
database.[17] To this end, we rely on kernel 
functions sufficiently diffuse to account 
for significant similarity measures among 
all training molecules. This enables us to 
reapply inverted kernel matrices to any ar-
bitrary set of molecular properties and to 
generate the corresponding ML models on 
the same footing. We have validated our 
approach by simultaneous training and 
prediction of 13 energetic and electronic 
molecular properties.

This article is organized as follows: 
Section 2, Methods, briefly summarizes 
the ML notations and definitions, along 
with a discussion of kernel function shape 
and spread. In Section 3, Computational 
Details, we describe our molecular data 
selection strategy, and discuss the selection 
of properties in the dataset. We present and 
analyze our results for the performance of 
property-independent kernels in Section 4. 
In Section 5 we draw our conclusions. In 
the appendix we explain how to access and 
reuse the kernel data.

2. Methods

Inarguably, one of the more appealing 
ML algorithms is kernel-ridge-regression 
(KRR)[19] because of its numerical robust-
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kernel element which corresponds to the 
two most distant training molecules, 

 � (5)
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. As such, 
through use of σ

opt
 and λ = 0, a property-in-

dependent global kernel matrix is obtained 
which only needs to be inverted once before 
it is used to generate property-dependent 
regression coefficients for all molecular 
properties of interest. For randomly sam-
pled 1 k molecules, from the dataset con-
sidered in this study (vide infra), 
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= 677 a.u., suggesting σ

opt
 ≈ 977 a.u. This 

number is consistent with a numerical grid 
search for σ

opt
 which identifies σ = 1000 

a.u. to be optimal for a 1 k ML model of 
atomization enthalpies. In the remainder 
of this study we discuss the performance 
of ML models based on inverted global 
kernels for up to 13 molecular properties, 
always with σ

opt
 = 1000 a.u. and λ = 0, ir-

respective of the training set size N.
We have also investigated if our obser-

vations depend on the choice of molecular 
descriptor, d. To this end, we have con-
sidered two different descriptors, namely 
the Coulomb-matrix (CM) with rows and 
columns uniquely permuted,[9] as well as 
the bag-of-bonds (BOB)[20] descriptor, 
amounting to an ordered set of weighted 
interatomic distances.

We have used the published[17] quan-
tum chemistry results for the smallest 
133885 (134 k) organic molecules subset 
of the GDB-17 published by Reymond et 
al.,[21] which contains over 166 giga mol-
ecules. This 134 k dataset contains relaxed 
geometries and chemical properties com-
puted using the DFT (B3LYP with basis 
set 6-31G(2df,p)). Here, we have pruned 
this dataset by eliminating all molecules 
with up to eight ‘heavy’ atoms (not count-
ing hydrogens) which, trivially, would be 
outliers since the dataset is dominated by 
molecules with nine heavy atoms. For the 
resulting 111594 (112 k) molecules, we 
have considered the following 13 comput-
ed properties: Zero-Kelvin internal energy, 
U

0
, thermochemistry energetics at 298.15 

K (internal energy, U, enthalpy, H, free en-
ergy, G, all three properties for the process 
of atomization, and heat capacity Cν); iso-
tropic molecular polarizability α; electron-
ic radial expectation value 〈R2〉; harmonic 
zero-point vibrational energy, ZPVE; en-
ergy of highest occupied molecular orbital 
(HOMO), ε

HOMO
; energy of lowest unoc-

cupied molecular orbital (LUMO), ε
LUMO

; 
HOMO-LUMO gap, ∆ε; and the highest 
fundamental vibrational wavenumber, ω

1
, 

in the 3000–3900 cm−1 range. 
Fig. 1 features the density distributions 

of the relative values of these properties, 

ness and conceptual simplicity. Within 
KRR, the ML Ansatz for a given property 
p of any query molecule, q, is merely a 
linear combination of similarity measures 
between q and a finite set of N training 
molecules t,

(1)
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In Eqn. (1) K
qt
 is a kernel matrix element 

corresponding to molecules q and t. In this 
study, we wish to investigate if K

qt
 can be 

made independent of p. We have chosen 
to use the exponentially decaying (a.k.a. 
Laplacian) kernel function of the similar-
ity measure between t and q, K

qt
 = exp(−

D
tq
/σ), where D

tq
 = |d

t
−d

q
| is the Manhattan 

norm of difference between two, typically 
non-scalar, descriptors of molecules t and 
q, respectively. The global hyperparam-
eter σ quantifies the kernel width.[19] For 
the Coulomb matrix (CM) descriptor, the 
combination of Laplacian kernel with L

1
 

norm has been shown to yield good ML 
models of atomization energies.[11]

Prior to predicting molecule q’s prop-
erty p

q
 according to Eqn. (1), the vector cp, 

with optimal regression coefficient 𝑐𝑐�� symb a
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 as 
weight for every training molecule t, must 
be obtained through minimization of the 
penalized Lagrangian function,

L = (pr – Kcp)T(pr – Kcp) + λcpTKcp � (2)

where matrices are in upper cases, vectors 
in lower case, and ()T denotes a transpose. pr 

represents the vector with reference prop-
erty values for all N training molecules, 
and K is the kernel matrix with above de-
fined elements. The λ-term imposes regu-
larization while the first term corresponds 
to the conventional least square regression. 
Setting the derivative of L with respect to 
cp, to zero, the coefficients which minimize 
Eqn. (2) can be shown[16] to amount to

cp = (K + λI)–1pr � (3)

The dependence of a model’s perfor-
mance on hyperparameters, σ, and λ, can 
be understood as follows. In the presence 
of training molecules with extremely out-
lying properties an optimal value of λ be-
comes non-zero in order to quench exces-
sively large elements of cp. In other words, 
the modeling function becomes more rigid 
and lessens the danger of overfitting. The 
meaning of the kernel width, σ, is to control 
the 𝑐𝑐�� symb a
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 contribution from training molecule 
t when making a new prediction, see Eqn. 
(1). Typically, optimal choices of σ, and λ 

are obtained for every molecular property 
and training set size through extensive use 
of cross-validation (CV) within training 
molecules. CV can become a computa-
tional bottleneck for larger training sets. 
For example, for training sets of N = 10 k, 
a 5-fold CV implies to repeatedly invert 8 
k × 8 k matrices, each requiring ~0.5 CPU 
hours on modern computing hardware.

In this study, we have explored the 
possibility to always keep all training mol-
ecules fixed, to estimate the hyperparam-
eter σ beforehand and to set λ to zero. This 
allows us to obviate all CVs, and to use 
a single identical kernel matrix K for any 
property. More specifically, once K−1 has 
been computed and stored, regression co-
efficients for any number of properties, p

1
, 

p
2
, ..., p

n
, can be computed simultaneously,

� (4)
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where C and Pr are the N × n regression 
coefficient and property matrices, respec-
tively. Consequently, instead of n CVs 
with computationally demanding multiple 
kernel matrix inversions, each scaling as O 
(N3), the computational cost is now being 
dominated by one kernel inversion plus n 
matrix-vector multiplications, each scaling 
as O (N2).

3. Computational Details

For typical molecular datasets, with N 
> 5 k, we find that optimal σ converges 
towards a large value to ensure non-van-
ishing contributions from all training com-
pounds while λ converges towards zero. 
The choice of setting λ to zero is easily jus-
tified: As also seen below, property values 
in the molecular dataset show distributions 
centered at an average value with relatively 
few outliers, if any. Over-fitting, leading 
to large coefficients for these outliers, is 
therefore unlikely to influence the perfor-
mance of ML models based on thousands 
of well-behaved training molecules. For 
the Laplacian kernel used here, extreme 
(too large/small) values of σ lead to loss 
of information regarding training descrip-
tor distances, D

ij
. For σ ≈ 0, off-diagonal 

elements of the kernel matrix, K
qt
 = exp(−

D
tq
/σ), vanish, resulting in a unit-kernel-

matrix, K = I. On the other hand, for σ 
>> 1, a kernel-matrix of ones is obtained 
which would be singular (and hence non-
invertible) for N > 1 and which does not 
resolve D

ij
. Here, we define the optimal σ 

value to be defined such that all kernel ele-
ments are in between 0.5 and 1. This can 
be accomplished through the constraint for 
the smallest kernel matrix element, i.e. the 



184  CHIMIA 2015, 69, No. 4� Laureates: Junior Prizes, SCS Fall Meeting 2014

scaled with respect to their maximal val-
ues in the dataset. We note the properties 
with large count densities to be polariz-
ability, dipole moment, energy of HOMO, 
and radial expectation value. Compared to 
these, all thermochemical properties are 
less densely distributed. Properties even 
more sparsely distributed include LUMO 
energy, gap and ZPVE; interestingly their 
densities also exhibit multimodal distribu-
tions (see Fig. 1), possibly arising from 
characteristic functional group moieties 
present in the dataset. The distribution of 
ω

1
 shows three narrow peaks, which can 

readily be interpreted as arising from C–H, 
N–H, and O–H (symmetric and asym-
metric) stretching modes. Corresponding 
values from literature[22] for similar wave-
numbers at the same level of theory read 
for CH

4
 (A

1
, 3038, and T

2
, 3152 cm−1), NH

3
 

(A
1
, 3459, and E, 3576 cm−1), and H

2
O (A

1
, 

3802, and B
12

, 3906 cm−1). Further details 
regarding the genesis of this dataset can be 
found in ref. [17].

4. Results and Discussion

Using single kernels of varying size, 
the systematic decay of ML prediction 
errors is summarized in Fig. 2 for all the 
aforementioned properties. To compare the 
error across different properties, irrespec-
tive of units and scale, we have used the 
mean absolute error (MAE) relative (i.e. 
RMAE) to desired quantum chemistry ac-
curacy norms as a suitable error measure. 
Note that all reported error measures re-
fer to out-of-sample predictions, i.e. for a 
given training set of size N, errors are pre-
sented as measured on the remaining 112 
k - N molecules. The target accuracy for 
the thermochemical quantities, and orbital 
energies is the highly coveted ‘chemical 
accuracy’ for energetics, i.e. 1 kcal/mol. 
For ω

1
, and ZPVE, both within the har-

monic approximation, we have selected a 
target accuracy of 10 cm−1. This value is 
slightly larger than the average accuracy of 
coupled cluster method, CCSD(T) + with 
converged basis sets,[23] for predicting har-
monic wavenumbers of small molecules, 
as measured by comparison to their experi-
mentally determined counterparts. For di-
pole moment and isotropic polarizability, 
the target accuracies employed are 0.1 D, 
and 0.1 
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 respectively. These thresholds 
are within the uncertainty of predicted val-
ues of the same properties at the CCSD 
level of theory.[24]

The most compelling feature in Fig. 
2 is the systematic decay in RMAEs for 
all molecular properties. This amounts to 
numerical evidence that predictive ML-
models for multiple properties can be 
built using a single kernel matrix with 
no property-specific parametrization. 
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 , |Cv|max = 47.0 cal/mol/K, |µ|max = 30.0 
D, |〈R2〉|max = 3375 
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𝑎𝑎�� symb j, |ZPVE|max = 171.9 kcal/mol, |εHOMO|max = 10.78 eV, |εLUMO|max = 4.68 eV, |∆ε|max 
= 12.57 eV, and |ω1|max = 3876.7 cm−1.
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Fig. 2. Relative 
mean absolute er-
rors (RMAE) in all ML 
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of out-of-sample 
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kernel function of size 
up to N = 40 k. See 
text for the definition 
of RMAE for respec-
tive properties. Top: 
Thermochemistry and 
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Bottom: Electronic 
properties. 
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Furthermore, the accuracy of these single 
kernel models can systematically be im-
proved through the addition of more train-
ing data. Among all properties, we note 
maximal learning rates for 〈R2〉 – a mea-
sure of diffuseness of the electron density, 
and quite possibly more directly linked to 
molecular geometry and composition than 
the other observables. ZPVE exhibits the 
second best learning rate, implying a po-
tential scope to invest on building larger 
ML models for the data-driven, rapid and 
accurate estimations of ZPVE corrections 
for a multitude of energetics such as bar-
rier heights, reaction/dissociation energies, 
and thermochemistry. At the limit of 40 k 
training molecules, none of the 13 proper-
ties were predicted within an RMAE of 1, 
indicating the need to employ larger train-
ing set sizes. µ and ω

1
 are the most difficult 

properties to learn with the smallest learn-
ing rates. We note that despite their strong-
ly differing distribution (shown in Fig. 1) 
HOMO and LUMO values have the same 
learning rate and only differ in their offset. 
For all properties, the near-linear learning 
curves suggest that target values of RMAE 
= 1 could be reached if only sufficiently 
large kernels were constructed. Due to the 
logarithmic scaling, however, the neces-
sary computational investment for training 
set generation will grow increasingly pro-
hibitive. We have also found such behav-
ior to be independent of descriptor choice: 
When repeating the ML calculations using 
the new descriptor BOB,[20] instead of the 
Coulomb matrix, we noted the same trends 
in error decays with slightly better overall 
performance.

In previous studies we have already an-
alyzed the effect on regression coefficients 
of a specific property due to tuning an ex-
ternal parameter,[16] here we can exploit the 
single kernel Ansatz to directly compare 
regression coefficients of different prop-
erties for the same training molecules. To 
demonstrate this point we have considered 
the 40 k coefficients used to predict H, α, 
and 〈R2〉. Fig. 3 illustrates the pairwise re-
lationships between properties H vs. α, and 
H vs. 〈R2〉, as well as between the corre-
sponding regression coefficients, c

t
, [Eqn. 

(1)]. On the one hand, α exhibits the famil-
iar lower linear bound in H, as also men-
tioned in ref. [10], and reminiscent of the 
minimal polarizability principle,[25] or the 
related maximum hardness principle.[26]  
By contrast, the 
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merely implying a disk shaped bivariate 
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, for any train-
ing molecule, t. On the other hand, and in 
contrast to α, the electron spread, 〈R2〉, cor-
relates poorly with H (see bottom panel in 
Fig. 3). The scatterplot for the correspond-
ing c

t, 
however, shows a characteristic 

cross shape, suggesting a mutually com-
plementary mode of action among train-
ing molecules. More specifically, training 
molecules very relevant for modeling one 
property (i.e. large c

t
 ) are insignificant 

for modeling the other property, and vice 
versa. Such a pattern could possibly arise 
from a bivariate normal distribution bound 
of 
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 with L
P
 -norm for 0 < P  

< 1. We note in passing that the properties 
and coefficients displayed in Fig. 3 are di-
mensionless because of the use of relative 
unit scales. Hence our results are compa-
rable to those from other methods as long 
as standards units are employed, and sys-
tematic errors are accounted for.

Overall, however, we note that the dis-
tribution of 𝑐𝑐�� symb a
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 is governed by the limits 
imposed through σ

opt
 . For the above men-

tioned trivial case of ultra-tight kernels, i.e. 
in the limit that σ → 0, we have K = K−1 = I, 
and hence cp = pr. This implies that for the 
diffuse kernel functions used in this study 
through choice of 
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, 
one should not expect c to reflect the same 
trends as properties. Finally we note the 
coefficients of all properties to show regu-
larized distributions that are peaked at zero 
(i.e. no over-fitting of outliers), giving fur-
ther justification to our choice of λ = 0. 

5. Conclusion

We have validated and exploited the 
fact that ML models based on property-in-
variant kernels in chemical space provide a 
consistent framework to learn any arbitrary 
set of global molecular properties on the 
exact same footing. Using quantum chem-
istry data for over 100 k organic molecules, 
we have presented evidence how this fa-
cilitates the simultaneous modeling of 
several properties. Numerical results have 
been discussed for the single kernel based 
ML model of a wide variety of electronic 
and energetic molecular properties, includ-
ing vibrational wavenumbers. Overall, we 
have generated 182 kernels of varying 
sizes for this study. To enable the reuse 
of the kernels for new properties by the 
community, we have made them publicly 
accessible (see Appendix). Due to the fact 
that the computationally most demanding 
step in the development of ML models is 
matrix inversion, requiring up to 2 CPU 
days when using 40 k training molecules, 
we include the inverse of the kernel matri-
ces along with the data. This should enable 
the accelerated development of models for 
new properties that can be applied to any 
molecules which fall within the 
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 of 
the employed kernel.
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(bottom). All values are in units of the maximal absolute property as defined in Fig. 1.
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6. Appendix: Usage of Kernels

We provide full access to all data gen-
erated in this study.[27] Fig. 4 illustrates the 
organization and expected usage of the da-
ta. Using inverse kernel matrices provided 
in the dataset, c vectors (see Eqn. (1)) of 
new properties can be computed through a 
matrix-vector operation (see Eqn. (3)). For 
this purpose, one can use properties re-
ported in ref. [17], or compute them fresh. 
It is possible to train a model for a prop-
erty computed at geometries from a theory 
slightly different than the one employed 
here. In such cases, c will account for both 
changes in theory, and in geometries (see 
discussions in ref. [18]). This c vector can 
then be used for the estimation of proper-
ties of query molecules with nine of the C, 
N, O, and F atoms. We caution the user that 
one should not expect predictive power for 
molecules that differ substantially from 
training set molecules in composition or 
geometry.
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Fig. 4. Schematic 
description of the 
database access and 
usage. Top: For vari-
ous training set sizes 
between 1 k, and 40 
k, inverse of kernel 
matrices, descriptors, 
an example program, 
and corresponding 
indices of the training 
molecules in the 134 
k dataset[17] are ar-
chived (see Appendix 
for details). Middle: 
With the input argu-
ment 1, and input 
property values, the 
program calculates 
the corresponding c 
vector. Bottom: With 
the input argument 2, 
c vector computed a 
priori, and geometries 
of query molecules, 
the program esti-
mates the corre-
sponding properties.


