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Ynol Ethers: Synthesis and Reactivity

Charlie Verrier, Sébastien Carret, and Jean-François Poisson*

Abstract: Ynol ethers are highly valuable substrates offering a wide range of reactivity. These highly electron-
rich heterosubstitued alkynes can be of great synthetic potential. In this mini-review, the different methods for
the synthesis of ynol ethers are first presented, divided in three main approaches involving a β-elimination, a
carbene rearrangement and a direct oxidation of an alkyne. Their reactivity is then summarized underlying their
synthetic utility. This non-exhaustive review aims at presenting the intrinsic reactivity of these compounds, still
underexploited in synthesis.

Keywords: Alkynes · Enol ethers · Ketenes · Synthesis · Ynol ethers

Introduction

Heterosubstituted alkynes are valuable
synthetic intermediates showing a wide
range of application. Among this class of
derivatives, ynol ethers have continuously
stimulated the creativity of synthetic chem-
ists, leading to reliable synthetic accesses
and to the emergence of a unique reactivity
pattern. The presence of the oxygen direct-
ly connected to the sp-hybridized carbon
results in a polarized, highly reactive, triple
bond. Ynol ethers are known since 1908
when Slimmer reported the isolation and
characterization of phenoxyacetylene.[1]
Nowadays, functionalized alkyl-, aryl-,
and silyl ynol ethers are easily accessible
and are used in a variety of synthetic trans-
formations. In this short review, which is
not an exhaustive report, the main synthet-
ic pathways of ynol ethers and a summary
of the reactivity profile are presented.

Synthesis of Acetylenic Ethers

Many strategies have been developed to
synthesize acetylenic ethers, which can be
divided into three different approaches: the
ynols ethers can be obtained via a carben-
oid rearrangement, by oxidation of alkynes
or by β-elimination from enol ethers.

Ynol Ethers by β-Elimination
Historically, the elimination reaction

was the first method to access acetylenic
ethers, and probably remains the most ef-
ficient and versatile strategy. Slimmer in
1908 reported the synthesis of phenoxy-
acetylene from dibromoacetals and so-

dium. Based on a similar strategy, Cramer
reported a more convenient procedure us-
ing zinc instead of sodium, providing eth-
yl- or butylethynyl ethers (Scheme 1a).[2]
The bromination of bromoacetaldehyde
dialkyl acetals followed by zinc-promot-
ed β-elimination afforded 2-bromoenol
ethers. A second base-promoted elimina-
tion provided the ynol ether. This double
elimination procedure gives moderate
yields, but is applicable to the preparation
of terminal oxygenated alkynes. A similar
method was later published by Newman,
using chloroacetaldehyde diethyl acetal
under Birch conditions (Scheme 1b).[3]
The intermediate sodium ethoxyacetylide
could then react with different alkyl bro-
mides, yielding substituted ynol ethers. A
similar approach has been reported by the
group of Nakaï,[4] using ethers of trifluoro-
ethanol as precursors, and by Pericas using
vinyl ethers.[5]

The enol ether β-substituted with a
leaving group could also be generated

from tribromoethanol.[6a] The bromo-silyl-
enol ethers, obtained by bromine lithium
exchange of the silyl ethers of tribromo-
ethanol followed by a carbenoid rearrange-
ment, were converted into the correspond-
ing silyloxyacetylides using LDA (Scheme
1c). The intermediate lithium acetylide
species could be trapped with various elec-
trophiles.[6b]

Normant, using trichloroethylene, pio-
neered a complementary strategy, allow-
ing the stepwise connection of the alkoxy
moiety first, followed by the substituent
at the second carbon.[7] 1,2-Dichloroenol
ethers are initially formed by reaction of
alkoxides with in situ generated highly
electrophilic dichloroacetylene. Deproton-
ation at low temperature followed by syn
β-elimination, and a chlorine/lithium ex-
change leads to the formation of the lithio
alkoxyacetylide (Scheme 2a).[8] The latter
can be hydrolyzed or trapped with a variety
of electrophiles. This synthesis is certainly
the most versatile method in term of scope
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Scheme 1. Formation of ynol ethers through β-elimination.
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on the nature of the metal (Scheme 5b).[22]
These additions of alkoxyacetylides offer
an easy entry to functionalized acetylenic
ethers, complementary to the direct oxi-
dation of triple bonds in functionalized
substrates, which in some cases may not
be compatible with the oxidation condi-
tions.

Ynol Ethers as Ketene Precursors
A first peculiar, and particularly inter-

esting, reactivity of alkyl-ynol ethers is
their propensity to rearrange into ketenes,
via a retro-ene sigmatropy. This syntheti-
cally useful transformation, based on the
thermal instability of acetylenic ethers,

affording the corresponding propargylic
alcohols.[18] These propargylic alcohols
showed an interesting reactivity; under
acid- or metal-catalyzed activation the
motif is converted into an α,β-unsaturated
ester, through the so-called Meyer-Schus-
ter rearrangement (Scheme 5a).[19] The
overall transformation represents an inter-
esting alternative to the classical olefina-
tion for hindered ketones.[20] The addition
of metallated ynol ethers to sulfonyl and
sulfinyl imines provides a modular access
to alkoxypropargyl amines.[21] In the case
of chiral sulfinylimines, the relative con-
figuration of the propargylic center can be
easily controlled and reversed depending

as both alkyl and aryl groups can be in-
troduced on the oxygen atom, while many
electrophiles are suitable for trapping the
intermediate lithio acetylide.

Starting from ketones, or esters, acet-
ylenic ethers can also be obtained. The
formation of unstable enol triflates from
α-alkoxyketones, followed by a treat-
ment with potassium tert-butoxide affords
a variety of aryl- and alkyl-substituted
ynol ethers (Scheme 2b).[9] Similarly, ace-
tic esters can be converted to ynol ethers
through enol phosphonate intermediates
(Scheme 2c).[10]

A final strategy was recently developed
by Evano giving access to aryloxyalkynes
in one step from dibromoalkenes (Scheme
2d).[11] The sequence involves a copper-
catalyzed C–O cross coupling of phenol
with gem dibromoalkenes to generate a
bromo-enol ether that is in situ converted
into the aryloxyalkyne with a base.

Ynol Ethers via Carbene
Rearrangement

The rearrangement of carbenes, or
carbenoids, constitutes a valuable strat-
egy to provide acetylenic ethers. Aromatic
α-silylated diazoketones undergo thermal
silyl migration and carbene formation,
which evolves through 1,2-migration to si-
lyloxyalkynes.[12] A carbenoid can also be
formed from esters through the addition
of dibromo-methyllithium.[13] The carben-
oid also evolves through 1,2-migration to
lithio alkoxyacetylene (Scheme 3).

Ynol Ethers from Alkynes
Historically, the group of Stang was the

first to use terminal alkynes as precursor
for silyloxyalkynes.[14] The reported two-
step procedure relies on an oxidation of
the alkyne by hypervalent iodine, produc-
ing an alkynyl tosylate. This intermediate
can be detosylated with methyllithium,
producing an ynolate that can be trapped
with bulky silyl chlorides, yielding the cor-
responding silyloxyalkyne in moderated
yield (Scheme 4a). Few years later, Julia
reported a more straightforward route.[15]
The oxidation of a lithium acetylide by
lithium tert-butylperoxide, followed by an
O-silylation, provides a direct transforma-
tion of terminal alkynes to silyloxyalkynes
(Scheme 4b). Finally, alkynyl-sulfon-
amides[16] and alkynyl-sulfones[17] treated
by potassium tert-butoxide afford the cor-
responding tert-butoxyacetylenic ethers in
good yields.

Reactivity of Ynol Ethers

Nucleophilic Addition of Alkoxy
Acetylide Anions

The nucleophilic addition of the lithio
alkoxyacetylides onto aldehydes and ke-
tones was originally reported by Arens,
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Scheme 2. Ynol ethers through β-elimination.
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The intermolecular carbolithiation of
ynol ethers generates an unstable vinyl-
lithium intermediate that spontaneously
β-eliminates to produce the corresponding
internal alkyne (Scheme 8a).[34] Neverthe-
less, via an intramolecular cyclisation, the
regioselectivity of the carbometallation
can be reserved with an anti carbolithia-
tion process, leading to a more stable or-
ganolithium species that can be trapped
with various electrophiles (Scheme 8b).[35]

Normant andAlexakis reported the car-
bocupration of ynol ethers affording the vi-
nyl ethers with a lack of selectivity when
the triplebondwassubstituted.[36]Recently,
Marek published a solution to circumvent
this lack of selectivity, with an effective re-
giodivergent carbocupration process, gov-
erned by the nature of the substituent on the
oxygen of the acetylenic ethers (Scheme
8c).[37] The carbometallation of ynol ethers

very much depends on the oxygen sub-
stituent: primary alkyl ethers being more
stable than secondary, the later being more
stable than tertiary ether (Scheme 6a).[23]
It has also recently been shown that allylic
and benzylic acetylenic ethers can rear-
range at lower temperatures.[24]

This ketene generation is very useful
for lactonization or macrolactonization,[25]
and has found an interesting application
in the total synthesis of the complex
natural product (+)-Acutiphycin (Scheme
6b).[26,27]

Taking advantage of this in situ ke-
tene generation, intramolecular cycload-
ditions reactions have been developed.
For instance, the [2+2] cycloaddition with
an olefin offers fused four/five bicycles
(Scheme 6c).[28]

Recently, Ready reported an elegant
Sonogashira coupling of alkoxyacetylenes
followed by a thermal sigmatropic rear-
rangement offering an in situ generation of
a variety of aromatic ketenes.[29] This ke-
tene generation strategy offers an access to
a wide range of carbonyl derivatives start-
ing from a single ynol ether intermediate
(Scheme 6d).

Ynol Ethers as Precursors of Enol
Ethers

Ynol ethers also afford a selective en-
try to Z and E enol ethers. Palladium-cat-
alyzed hydrogenation selectively affords
the Z enol ether,[30] whereas LiAlH

4
reduc-

tion selectively leads to the E enol ethers
(Scheme 7).[31]Ynol ethers are also exclu-
sive precursors for a selective synthesis of
disubstituted enol ethers. The hydrobora-
tion of ynol ethers produces exclusively an
E enol ether by syn addition of pinacolbo-
rane.[32] Combined with a subsequent Su-
zuki-Miyaura coupling, β,β-disubstituted
vinyl ethers can be efficiently obtained in
a one-pot procedure (Scheme 7).[33]
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has also recently been extended to car-
bonickelation[38] and carbopalladation.[39]

Cycloisomerizationwith Ynol Ethers
Finally, acetylenic ethers can be en-

gaged in cycloisomerization processes for
the formation of carbocycles. Danheiser
reported the [2+2] intermolecular cyclo-
addition between ketenes and ynol ethers,
providing cyclobutanones that subsequent-
ly rearranges offering an entry to a vari-
ety of phenols.[40] Using either triflic acid
or gold complexes Kozmin reported the
transformation of 1-silyloxy-1,5-enynes
into cyclohexadienes.[41] This gold-cata-
lyzed ynol activation was then extended
to the synthesis of more complex scaffolds
involving a furan acting stepwise as nu-
cleophile and electrophile (Scheme 9).[21]

Conclusion

Acetylenic ethers are valuable synthet-
ic intermediates. The variety of reactivity
of the polarized triple bond makes it a very
useful synthon in organic synthesis: the
panel of reactivity surely offers opportu-
nities for further exploration, and for the
discovery of novel transformations.
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