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Reaction Rate Maxima at Large Distances
between Reactants
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Abstract:One commonly thinks that two reactants need to come very close to one another in order for a chemical
reaction to occur. This is true for most reaction types, but electron transfer is an exception in this regard. It is
a well-documented fact that electron transfers can occur over long distances (≥15 Å), but it is much less well-
known that theory predicts a regime in which electron transfer rates increase with increasing distance between
reactants. This contribution explains the physical origin of this counter-intuitive behavior, and it identifies a set of
conditions that might facilitate its experimental observation.
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1. Introduction

Chemical reactions commonly require
collisional encounters between reactants.
Electron transfer is an exception because
the low mass of electrons permits long-
range reactions between distant donors
and acceptors. In many enzymes, electron
transfer takes place between reactants that
are separated by ≥15Å.[1,2] In artificial sys-
tems, electron transfer processes occurring
over ≥25Å have been observed.[3]With in-
creasing donor–acceptor separation, elec-
tron transfer rates (k

ET
) usually decrease,[4]

but theory predicts a regime in which k
ET

increases with increasing distance.[5,6] The
purpose of this article is to introduce this
counter-intuitive effect to a broader reader-
ship.

A well-known and experimentally very
thoroughly investigated outcome of elec-
tron transfer theory is the so-called invert-
ed driving-force effect (Fig. 1).[7]At a giv-
en donor–acceptor distance (r

DA
), electron

transfer rates increase with increasingly
negative reaction free energy (∆G

ET
0) un-

til they reach a maximum at which –∆G
ET

0

is equal to the reorganization energy (λ).
Upon further increase of the driving-force,
k
ET
decreases. This effect was initially pre-

dicted by theory,[7,8] and later verified by
many experimental studies.[9–11] The maxi-
mum in k

ET
at –∆G

ET
0 = λ originates in the

nuclear factor (κ
n
) of the Marcus equation

for electron transfer rates (Eqn. (1)). κ
n
is

evidently a Gaussian function of ∆G
ET

0,
and it is called ‘nuclear’ factor because it
captures the response of nuclei (of donor,
acceptor, and solvent molecules) to the
electron transfer event (in the form of the
reorganization energy λ).
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κ
n
is equivalent to the activation en-

ergy (E
A
) term of the Arrhenius equation

with E
A
= (λ+∆G

ET
0)2 / (4⋅λ). The reactant

and product potential energy wells (f
r
, f

p
)

in Fig. 1 illustrate how E
A
goes through a

minimum at – ∆G
ET

0 = λ where the reac-
tion is in fact barrierless. In experiment,
the decrease of k

ET
in the inverted regime

(–∆G
ET

0 > λ) is often less pronounced than
expected based on Eqn. (1) due to so-called
nuclear tunneling effects,[9] but this is of
minor importance here.

Aside from the nuclear factor (κ
n
), a

frequency factor (ν
n
), and an electronic

factor (κ
el
) govern k

ET
in the semi-classical

limit (Eqn. (2)).[12]

k
ET
= ν

n
· κ

el
·κ

n
(2)

The frequency factor is equivalent
to the collision frequency factor of the
Arrhenius equation, whereas the electronic
factor takes the interaction between distant
donors and acceptors (H

DA
) into account.

Fig. 1. Lower part:
Dependence of elec-
tron transfer rates
(kET) on the reaction
free energy (∆GET

0).
The reorganization
energy (λ) was arbi-
trarily chosen as 1 eV
in this picture. Upper
part: Reaction and
product potential en-
ergy wells (fr, fp) in the
normal (left), activa-
tionless (middle), and
the inverted regimes
(right). The inverted
driving-force effect
is well explored and
understood.
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In Eqn. (6), D
op
and D

s
are the optical

and static dielectric constants of the sol-
vent, respectively. The former is connected
to the refractive index (η) by the relation-
ship D

op
= η2. (D

op
basically describes how

solvent molecules respond to the oscil-
lating electric field generated by optical
wavelengths). From Eqn. (6) it is evident
that λ

o
increases with increasing D

s
(in-

creasing solvent polarity) andwith increas-
ing r

DA
. In Fig. 2, the distance dependence

of λ
o
is shown for CH

3
CN (η = 1.3341, D

s
= 35.7) and reactant radii of a

1
= a

2
= 4 Å.

Under these conditions, Eqn. (6) pre-
dicts an increase of λ

o
from 0.94 eV to 1.63

eV between van-der-Waals contact (8 Å)
and 30 Å. Qualitatively, the increase of λ

o
with increasing r

DA
can be understood on

the basis of more isolated point charges re-
sulting from electron transfer over longer
distances, and consequently the solvent
dipole – charge interaction increases with
increasing donor-acceptor distance. There
are also more sophisticated models that
treat the reactants as ellipsoids,[17] but the
results in Fig. 2 are quite typical.

Thus, there are two opposing effects
that influence the distance dependence of
k
ET
: (i) the decrease of H

DA
with increasing

distance (Eqn. (4)), and (ii) the increase of
λ
o
with increasing distance (Eqn. (6)).

3. Consequences of Opposing
Distance Dependences of HDA
and λo on Marcus Parabolas

Since k
ET
is a function of ∆G

ET
0, λ, and

H
DA
, the influence of distant-dependent

H
DA

and λ
o
can be visualized in plots of

log(k
ET
) versus ∆G

ET
0, similar to the one

shown in Fig. 1. Fig. 3 contains such plots
for three different donor–acceptor dis-
tances (r

DA
= 8, 11, 21 Å), calculated using

Eqns (1)–(6) and a few reasonable input
parameters. In particular, a value of 200
cm–1 was assumed for H

DA
(0) and a value

with increasing donor–acceptor distance is
frequently neglected.[16] In most cases, this
is unproblematic because the exponential
distance dependence of H

DA
(Eqn. (4)) is

dominant. However, there can be scenarios
in which the distance dependence of the re-
organization energy plays a decisive role.
There are in fact two contributions to the
overall reorganization energy, called in-
ner- (λ

i
) and outer-sphere (λ

o
) reorganiza-

tion energies (Eqn. (5)).[7]

λ = λ
i
+ λ

o
(5)

The inner-sphere contribution de-
scribes the energy cost associated with
nuclear reorganization occurring on the
donor and acceptor moieties as a conse-
quence of electron transfer, for example
bond length changes. Solvent molecules
around the donor and acceptor respond to
the charge redistribution which is associ-
ated with electron transfer, and the energy
which is necessary for solvent reorienta-
tion is the outer-sphere contribution to the
overall reorganization energy. While λ

i
is

essentially distance independent, λ
o
is a

function of the donor–acceptor separation
and solvent polarity. λ

o
frequently makes

the dominant contribution to the overall
reorganization energy.

In the simplest model describing the
distance dependence of λ

o
, electron donor

and electron acceptor are assumed to be
spheres with radii a

1
and a

2
, separated by

the distance r
DA

(Eqn. (6)).[7]
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is in fact proportional to H
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2 (Eqn.
(3)).

(3)
Tkh

HDA
eln ⋅⋅

⋅
⋅

=⋅
λ
π

κν
322

According to superexchange theory,[13]
H

DA
can be nonzero even when donors and

acceptors are separated by ≥15 Å because
bridging units (covalent linkers or inter-
vening solvent molecules) can mediate
long-range electronic coupling. Since hy-
drogen atom-like wavefunctions have ra-
dial parts that (at sufficiently large distance
from the nuclei) drop off exponentially
with increasing distance, orbital overlaps
decrease exponentially with distance as
well. This causes an exponential distance
dependence of H

DA
(Eqn. (4)).

(4)( )( )0)0( exp)( rrHrH DADADADA −⋅−⋅= β

In Eqn. (4), H
DA

(0) is the electronic cou-
pling at contact distance (r

0
) between reac-

tants, and β is the so-called distance decay
parameter. Because k

ET
∝ H

DA
2 (Eqns (2),

(3)), exponential distance dependences of
k
ET

are frequently observed experimental-
ly, both in biological and artificial systems.
Exponential distance dependences are in
fact typical for so-called superexchange
tunneling, a process in which the electron
tunnels through a barrier imposed by the
intervening medium (covalent bridging
units or solvent molecules) between the
donor and the acceptor.[4] When the inter-
vening medium becomes redox-active it-
self, electrons (or holes) can hop over the
barrier and k

ET
decreases less steeply with

distance.[3,14]
Regardless of whether tunneling or

hopping is considered, the common ex-
perimental observation is a decrease of k

ET
with increasing distance. One of the direct
consequences of electron transfer theory
is that there can be scenarios in which k

ET
increases with increasing distance, and this
has been pointed out a long time ago.[5,6,15]
However, experimental evidence for this
peculiar behavior is virtually non-existent,
and consequently this effect is not well
known. In the following chapters we will
explain its physical origin, and we will
identify a set of conditions that might favor
its experimental observation.

2. Distance Dependence of the
Reorganization Energy λ

The distance dependence of k
ET

is of-
ten solely attributed to the distance depen-
dence of H

DA
, and the fact that the reorgani-

zation energy (λ) can change significantly

Fig. 2. Outer-sphere
reorganization en-
ergy (λo) as a function
donor–acceptor dis-
tance (rDA) assuming
spherical donors and
acceptors with radii
(a1, a2) of 4 Å and
CH3CN (η = 1.3341,
Ds = 35.7) as the
solvent. Calculated
using Eqn. (6).
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(1)–(6) and the same input parameters as
used above for Fig. 3 (H

DA
(0) = 200 cm–1,

β = 0.8 Å–1, λ
i
= 0.1 eV, a

1
= a

2
= 4 Å, η =

1.3341, D
s
= 35.7). Under these conditions,

k
ET
decreases nearly exponentially with in-

creasing distance, with a minor deviation
from strictly exponential decay behavior at
short distances. This deviation stems from
the distance dependence of the nuclear fac-
tor (κ

n
) which is relatively weakly distant

dependent at ∆G
ET

0 = –1.0 eV (dashed line
in Fig. 4a). The dominant contribution to
k
ET
comes from the ν

n
⋅κ

el
term (dotted line

in Fig. 4a) at all distances. In other words,
the distance dependence of H

DA
(Eqn. (6))

dominates over the distance dependence
of λ

o
(Eqn. (4)) at ∆G

ET
0 = –1.0 eV, and

consequently one observes the commonly
expected nearly exponential distance de-
pendence of k

ET
in this regime.

In the inverted driving-force regime at
∆G

ET
0 = –2.0 eV, the distance dependence

of the nuclear factor (κ
n
) begins to play a

decisive role, particularly at short distanc-
es (dashed line in Fig. 4b). Now κ

n
exhib-

its qualitatively different behavior from the
situation at ∆G

ET
0 = –1.0 eV in that κ

n
in-

creases with increasing distance. The rea-
son for this is that the (λ+∆G

ET
0)2 term in

κ
n
(Eqn. (1)) decreases with increasing λ

when –∆G
ET

0 > λ (the sum of λ and ∆G
ET

0

becomes less negative). The increase of
κ
n
is particularly steep at relatively short

distances, because in this regime the dis-
tance dependence of λ

o
is steepest (Fig.

2). Over the distance range between 8 and
11 Å, κ

n
increases by more than two or-

ders of magnitude (dashed line in Fig. 4b),
while the decrease of ν

n
⋅κ

el
over the same

distance range (dotted line in Fig. 4b) is
close to one order of magnitude. Since k

ET
is the product of κ

n
and ν

n
⋅κ

el
(Eqn. (2)),

the consequence is a maximum of k
ET

at
11 Å (solid line in Fig. 4b), significantly
beyond van-der-Waals contact distance (8

mind that the y-axis in Fig. 3 is logarithmic
hence the magnitude of this predicted ef-
fect is substantial.

4. Distance Dependence of kET
in Normal and Inverted Regimes

As seen from Fig. 3, one expects fun-
damentally different distance dependences
of k

ET
depending on whether a reaction

occurs in the normal or inverted driving-
force regimes. It is useful to consider the
two specific scenarios marked by the dot-
ted vertical lines in Fig. 3 to get more quan-
titative insight.

The distance dependence of k
ET

at
∆G

ET
0 = –1.0 eV is represented by the solid

line in Fig. 4a. It was calculated using Eqns

of 0.8 Å–1 was used for β. The calculations
were made for reactants with radii of 4 Å
(a

1
, a

2
) in CH

3
CN (η = 1.3441, D

s
= 35.7).

A constant inner-sphere reorganization en-
ergy (λ

i
) of 0.1 eV was assumed, a small

value compared to the λ
o
values calculated

in Fig. 2.
The driving-force parabolas in Fig. 3

shift towards the bottom right corner as
the donor–acceptor distance (r

DA
) gets lon-

ger,[18] and it is easy to understand why:
As H

DA
decreases with increasing r

DA
(Eqn. (4)), k

ET
must decrease because k

ET
∝ H

DA
2 (Eqns (2), (3)), shifting the parabo-

las down. As λ increases with increasing
distance (Eqns (5), (6)), the maxima of
the parabolas shift to the right because
the barrierless point (i.e. maximal k

ET
) is

reached when – ∆G
ET

0 is equal to λ (Eqn.
(1), Fig. 1).

It is evident from Fig. 3 that at con-
stant driving-force, very different distance
dependences of k

ET
should be observable

depending on the exact value of ∆G
ET

0. The
two vertical dotted lines in Fig. 3 illustrate
this aspect. The first line is drawn at ∆G

ET
0

= –1.0 eV, which is close to the activation-
less point of the parabola calculated for
r
DA

= 8 Å but clearly in the normal regime
(–∆G

ET
0 < λ) for the two other parabolas

(r
DA

= 11, 21 Å). There is nothing pecu-
liar to observe in this regime, k

ET
simply

decreases with increasing distance. The
second vertical line in Fig. 3 is drawn at
∆G

ET
0 = –2.0 eV, which is in the inverted

region (–∆G
ET

0 > λ) for all three parabolas.
One immediately notices that k

ET
is now

larger at r
DA

= 11 Å than at r
DA

= 8 Å. In
other words, the calculated rate for elec-
tron transfer increases with increasing do-
nor–acceptor distance. It should be kept in

Fig. 3. Driving-force
dependences of
kET for three differ-
ent donor-acceptor
distances (rDA). The
calculations were
performed using Eqns
(1)–(6) and the follow-
ing set of input pa-
rameters: HDA

(0) = 200
cm-1, β = 0.8 Å-1, λi =
0.1 eV, a1 = a2 = 4 Å,
η = 1.3341 (Dop = η2),
Ds = 35.7. The choice
of these parameters
is not unusual in any
regard.

Fig. 4. Distance dependences of kET (solid lines), the nuclear factor κn (dashed lines), and the
product of frequency factor and electronic factor νn⋅κel (dotted lines). The calculations are based
on Eqns (1)–(6) and the same set of input parameters as for Fig. 3. The curves in (a) were calcu-
lated for ∆GET

0 = –1.0 eV, the curves in (b) were obtained for ∆GET
0 = –2.0 eV (i.e. the two driving-

forces marked by dotted vertical lines in Fig. 3).
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this process occurs in the normal regime.
Once the products have been formed, they
can diffuse away from each other, but as
the distance between them increases, the
rate for the undesired charge-recombina-
tion event actually increases because this
process occurs in the inverted regime (sol-
id line in Fig. 5). Consequently, the effect

frequently occur in the inverted regime in
which –∆G

ET
0 > λ. Fig. 5 illustrates how

this set of conditions can be problem-
atic for obtaining efficient photoinduced
charge separation in bimolecular reaction
systems: The desired photoinduced pro-
cess has its rate maximum at close contact
between reactants (dotted line), because

Å). Thus, between 8 and 11Å, the distance
dependence of k

ET
is dominated by the dis-

tance dependence of λ
o
, and the electronic

coupling (H
DA
) only plays a dominant role

at longer distances.
The solid lines from Fig. 4 are shown

on linear scales in Fig. 5. The difference
between the distance dependences of k

ET
at the two different driving-forces (∆G

ET
0 =

–1.0 eV dotted line; ∆G
ET

0 = –2.0 eV solid
line) becomes particularly evident in this
representation. Obviously, the precise lo-
cation of the rate maxima is dependent on
the specific properties of the donor/solvent/
acceptor combination, but, as noted above,
the set of input parameters that leads to the
calculation of the curves in Fig. 5 is by no
means unusual.

The increase of the nuclear factor with
increasing distance at ∆G

ET
0 = –2.0 eV can

easily be rationalized on the basis of the
Marcus parabola in Fig. 3. The correspond-
ing vertical line intersects the parabola for
r
DA

= 8 Å deeply in the inverted region
where – ∆G

ET
0 is significantly greater than

λ. As r
DA

increases, the intersection occurs
at less and less deeply inverted points be-
cause the parabola shift to the right. This
leads to reactant (f

r
) and product (f

p
) po-

tential energy wells as illustrated in Fig. 6.
At r

DA
= 8 Å (Fig. 6a), one is clearly in the

inverted region in which the product po-
tential well intersects the reactant potential
well to the left of the minimum of the lat-
ter. Already at r

DA
= 11 Å (Fig. 6b), the in-

tersection between the two potential wells
occurs significantly closer to the minimum
of the reactant well, and thus the activa-
tion barrier for electron transfer decreases.
This accounts for the rate increase between
8 and 11 Å. At r

DA
= 21 Å, the activation

barrier gets even lower (Fig. 6c), but at
that point the decrease in H

DA
is already

dominant.

5. Practical Implications of the
Unusual Distance Dependence
of kET

The counter-intuitive distance depen-
dence of reaction rates illustrated by Fig. 5
is certainly of fundamental interest, but of
course the question arises what practical
implications this effect might have. The
answer is simple: Many photoinduced
electron transfer reactions that lead to the
generation of electron-hole pairs, a form
of chemically stored light energy, occur in
the normal regime in which –∆G

ET
0 < λ.

Once these electron-hole pairs are formed,
thermal reverse electron transfer process-
es leading to a recombination of electron
and hole can occur, and such reactions are
obviously undesired if light is to be con-
verted into chemically useful forms of
energy. Such charge-recombination events

Fig. 5. Distance de-
pendence of kET in the
normal (dotted line;
∆GET

0 = –1.0 eV) and
the inverted (solid
line; ∆GET

0 = –2.0 eV)
driving-force regimes.
The calculations are
based on Eqns (1)–(6)
and the same set of
input parameters as
for Figs 3 and 4.

Fig. 6. Upper half: Reactant (fr) and product (fp) potential energy wells calculated on the basis of
the parameters used in Figs 3 and 4b (∆GET

0 = –2.0 eV). Q is a normal coordinate in arbitrary units,
capturing all nuclear changes (on donor, acceptor, and solvent molecules). Lower half: Zooms into
the regions marked by the dotted squares in the upper half.
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illustrated by Fig. 5 can severely limit the
quantum efficiency of light-to-chemical
energy conversion. The effect outlined
above has been used as an argument to
explain the difficulties in observing the in-
verted driving-force effect in bimolecular
reaction systems.[6,15]

6. Experimental Studies of Unusual
Distance Dependences of kET

We are unaware of prior experimental
studies which have provided direct evi-
dence for an electron transfer rate maxi-
mum at large donor-acceptor separations
due to the effect described above.As noted
in the introduction, the phenomenon itself
has been predicted a long time ago.[5,6,15]
Also, the increase of λ

o
with increasing

distance is well documented, and of course
the exponential decrease of H

DA
has been

observed numerous times.[4] However, it is
not trivial to find unambiguous experimen-
tal evidence for electron transfer reaction
rate maxima at large donor–acceptor sepa-
rations for several reasons. For example,
the donor–acceptor distance must be kept
constant on the timescale of the electron
transfer events if the influence of reactant
separation distance on k

ET
is to be explored.

To eliminate diffusion, frozen (glassy)
matrices or covalent donor–bridge–accep-
tor molecules are viable possibilities, but
in both cases the choice of suitable donor,
bridge, and acceptor components is not
straightforward when aiming to search for
this effect. Moreover, the solvent plays a
key role because the outer-sphere reorga-
nization energy is of pivotal importance.
In covalently linked systems, care must be
taken regarding increasing π-conjugation
with increasing bridge length. Prior stud-
ies of oligo-p-phenylene and p-phenylene
vinylene bridged systems have reported
an increase of k

ET
with increasing do-

nor–acceptor distance in some selected
cases,[19,20] but this is most likely due to
the increasing π-conjugation of these par-
ticular bridges when they are lengthened.[3]
The decrease in HOMO-LUMO energy
gap leads to smaller barriers for tunneling
(stronger superexchange coupling), and

in some extreme cases may even result
in a changeover from the tunneling to the
hopping mechanism. Thus, even when an
increase of k

ET
with increasing distance is

observed, it is not a priori clear that the ob-
served effect can indeed be attributed to the
interplay between λ

o
and H

DA
illustrated in

Fig. 4b.
Factors that favor the observation of

the effect described herein are the follow-
ing: (i) a high driving-force (very negative
∆G

ET
0), (ii) relatively low distance decay

constant (small β). High driving-forces
are readily accessible for thermal charge-
recombination reactions which follow
photoinduced charge-separation in cova-
lent donor–bridge–acceptor molecules. As
molecular bridges, p-xylene spacers could
be well suited because the π-conjugation
increases much less with increasing bridge
length than in p-phenylenes and p-phenyl-
ene vinylenes,[3,19] yet p-xylenes provide
relatively low β-values.[21]

It has been noted that the two-sphere
model (Eqn. (6)) as well as more sophis-
ticated models significantly underestimate
the increase of the outer-sphere reorgani-
zation energy with increasing distance, at
least in some cases.[16] If the increase in λ

o
is indeed substantially stronger than antici-
pated based on theory, this would be ben-
eficial for observation of electron transfer
rate maxima at large donor–acceptor sepa-
rations. In this context, consideration of
proton-coupled electron transfer (PCET)
reactions might be useful because PCET
can be associated with particularly large
reorganization energies.[22] One possibility
would be to use electron acceptors that can
be protonated (or strongly hydrogen-bond-
ed) by the solvent upon electron transfer,
or electron donors which are deprotonated
in the course of oxidation.

Note added in proof: After submission
of this manuscript, we published two ex-
perimental studies in which we observed
electron transfer rate maxima at large do-
nor‐acceptor distances.[23,24]
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