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Abstract: The production of the L/T channel blocker ACT-280778 required the enantiomerically pure
5-phenylbicyclo[2.2.2]oct-5-en-2-one (1) as key building block. As the published routes towards 1 are very low
yielding (<0.5% yield) and comprise many steps that are not acceptable for scale-up, a series of processes
to 1 was developed to match the increasing requirements from first kg-batches to clinical supplies. The three
routes are characterized by an individual asset. (1) The first route contains a scale-up of a Diels–Alder reaction
with highly reactive reagents and afforded 90 kg enantiomerically pure 1. To mitigate safety risks, a flow reactor
was developed for the high-temperature Diels–Alder reaction. This route relied on an efficient enantiomer
separation on a ¼-ton scale by HPLC. (2) A Crystallization Induced Diastereomer Transformation (CIDT) during
an intramolecular aldol reaction was the pivotal step of a first enantioselective route that starts with the Shibasaki
reaction. (3) The 2nd enantioselective route represents a rare example of organocatalysis on scale and allowed
to skip six out of nine steps with a significant impact on the cost of goods. This simple way to 1 opened up
a short synthesis of Hayashi’s chiral diene ligands (bod*) that were so far lacking an affordable access. Some
of these novel C1-symmetrical dienes have shown very high enantioselectivities in Rh-catalyzed additions of
arylboronates.
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under the guidance of Prof. Dr. D. Seebach
at the ETH Zurich in 1999. For 7 years,
he worked at Carbogen-Amcis, where he
had the pleasure to perform or supervise
the production of more than 80 Active
Pharmaceutical Ingredients (API), in the
roles of Project chemist, Group Leader
R&D, and Head GMP production. In ad-
dition, he was deputy Head ESH releas-
ing production protocols at the Neuland
site. In 2006, Stefan Abele set up a fully
integrated Process R&D group at Actelion
Pharmaceuticals Ltd with responsibility
for all scientific, technical, organization-
al, and budgetary aspects. His teams’tasks
encompass route finding and production
of multi-kilogram amounts of API’s, and
the development of 2nd generation routes,
thereby combining scientific understand-
ing and flexibility with commercial per-
spectives. Outsourcing parts of the work is
driven by tactical or technological consid-
erations and is deemed crucial for a lean
and efficient drug development. He has au-
thored around 60 scientific papers and pat-
ent applications, and he frequently gives
invited lectures in industry, international
conferences, and at universities.

„Es ist nicht genug zu wissen – man
muss auch anwenden. Es ist nicht genug
zuwollen –manmuss auch tun.“—Johann
Wolfgang von Goethe

Stefan Abele studied chemistry in
Germany, France, and Switzerland. He
did his diploma work with Prof. Dr. R. R.
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Introduction

The chiral bicycle ACT-280778 is a
L/T calcium channel blocker potentially
indicated for the treatment of hyperten-
sion and angina pectoris, currently under
clinical development (Scheme 1).[1] There
was a need for a robust, safe, and scalable
production of the Active Pharmaceutical
Ingredient (API) ACT-280778 bis-male-
ate to supply material for preclinical and
clinical studies.

Various technologies were required
for the manufacturing of chiral bicycle 1
depending on the stage of development.
Early stages call for a fit-for-purpose route
that can safely deliver the API for first
Entry-into-Man studies. A safe scale-up
of a Diels–Alder reaction involving acry-
lonitrile monomers followed by a highly
productive racemate resolution by large-
scale HPLC secured more than 90 kg of
1. Anticipating future demands, 2nd gen-
eration routes were developed that obvi-
ated the intrinsic 50%-yield loss of this
racemate resolution by building on enan-
tioselective steps. A final organocatalytic
tandem Michael–aldol reaction of phen-
ylacetaldehyde with cyclohexenone in the
presence of proline brought down the cost
of goods for 1 by more than 90%. Besides,
this simple approach to 1 opened up a short
access to chiral dienes, a new class of privi-
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access to 1 relied on the Diels–Alder reac-
tion of 3,4-dihydro-1,1'-biphenyl (8) with
4. However, 8 was not stable and its onset
temperature for the highly exothermic de-
composition in the Differential Scanning
Calorimetry (DSC) coincided with the pro-
cess temperature of 110 °C. The Michael
addition of either malonates or phenyl-
acetonitrile to cyclohexenones 9, 10, or
11 was a complementary method to build

es those that did deliver the target bicyclic
ketone. Routes a)–d) rely on Diels–Alder
reactions, whereas routes e)–i) build upon
asymmetric Michael additions. The three
Diels–Alder reactions of the TMS-diene 5
with the acrylic monomers 4, 6, and 7were
developed as fit-for-purpose processes to
deliver from 2–180 kg racemic 1 that was
later on resolved into its enantiomers by
HPLC (vide infra).[5]An intriguingly short

leged ligands that suffered from very high
costs. Scheme 2 summarizes the salient
features of our work en route to 1 that was
honored by the Sandmeyer Prize 2015

FDA’s recent imperative for Quality
by Design (QbD) is not only decisive for
patient safety but also for the timely and
uninterrupted supply of drugs. In general,
QbD means (i) the thorough understand-
ing of the process and of the product and
(ii) the knowledge of the risks associated
with the manufacturing process and of
the strategies how to mitigate those risks.
More specifically, key ingredients of a
QbD process are the assessment of the
variability in the critical quality attributes,
impurity tracking, detecting and solving
mass-transfer related scale-up issues like
mixing, etc. The ultimate goal is a robust
process that delivers the API in a predict-
able and efficient way, in consistent purity
and at acceptable costs. The route selec-
tion plays a primordial role: a route that
calls for a plethora of control points and
is strongly dependent on a narrow set of
variables cannot be developed – through
QbD principles – to the robustness level
of a route that has intrinsic robustness. In
other words, QbD should start as early as
possible. An example of a less robust route
is one with many telescoped steps lacking
purification opportunity by crystallization,
or a route that suffers scale limitations to
control hazards (like the Diels–Alder batch
reactions to 1). An attribute of an intrinsi-
cally robust route is for example little sen-
sitivity to air, mixing, the quality of raw
materials, or the simplicity of the process
(like the organocatalytic approach to 1). It
is an asset if a robust route is conceived and
developed early. Expenditures and time-
line until the registration of the process are
likely to diminish, capitalizing on both the
intrinsic robustness of the route and a thor-
ough process understanding later on.

The Diels–Alder Approach

At the outset, Diels–Alder approaches
seemed to be best suited for the quick-
est delivery of material for Phase I stud-
ies. Indeed, Paquette,[2] Takeuchi,[3] and
Hayashi[4] had published various accesses
to 1 (Scheme 3).

However, already the first step, the
Diels–Alder reaction of acetoxyacryloni-
trile (4) and (cyclohexa-1,5-dien-1-yloxy)-
trimethylsilane (5) en route to diketone
rac-6 turned out to be inapplicable for
the delivery of more than 50 g due to tar
formation, low purity and yield, all being
aggravated by non-solid, non-UV active
intermediates. Furthermore, the very low
yield was an impediment for scale-up. We
homed in on testing many different ap-
proaches towards 1, Scheme 4 summariz-
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the range of 1/3 of that of trinitrotoluene)
and the reaction hampered an immedi-
ate and safe scale-up. The rapid delivery
of this first kg of 1 was dependent on an
early risk assessment of the hazardous
Diels–Alder reactions with highly reactive
acrylic monomer 4 by the Swissi Process
Safety GmbH.[9,10] Fig. 1 shows the DSC
trace of the neat Diels–Alder reaction of
4 and 5. The first exothermic event with
a peak around 180 °C can be attributed to
the desired reaction, and overlaps with the
exothermic decomposition of the product
12. Further safety investigations restricted
the scale of this reaction at the low kg-
range in agitated glass vessels.[9]

Wehence replaced acetoxyacrylonitrile
(4) by other dienophiles like acrylonitrile
(6) or chloroacrylonitrile (7). The Diels–
Alder reaction of 6 with 5 suffered from
the same limitations as the one with 4.
Fortunately, theDSC trace of amixture of 7
with the diene 5 showed that these two exo-
thermic events are better separated (Fig. 2).
However, when the neat Diels–Alder reac-
tion with 7 was performed at 70 °C instead
of 140 °C (7 being more reactive than 5),
the adiabatic end temperature would be
270 °C, still triggering decomposition.

Further thermal risk assessment was
mandatory using the concept of the cool-

duced in-house to enable the crucial start.
Acetoxyacrylonitrile was produced from
chloroacetaldehyde (15) and NaCN via
2-chloro-1-cyanoethyl acetate (16).

Severe safety concerns about both the
dienophiles (decomposition energies in

up the bicycle. Especially approach h) was
of importance as the Shibasaki reaction,[6]
i.e. the asymmetric Michael addition of di-
methylmalonate to cyclohexenone, estab-
lished the first chiral center in an efficient
manner and allowed for the first enanti-
oselective approach to 1,[7] and ultimately
paved the way to the final organocatalytic
approach i),[8] both described as 2nd genera-
tion routes below.

Further approaches were tested without
success. Diels–Alder reactions of various
alkynes with 5 gave no reaction or led to
the Alder–Rickert product. Lewis acids
are typically used to accelerate Diels–
Alder reactions. However, the TMS-diene
5 proved to be too labile for many of
them, and none of the tested Lewis acids
allowed a reduction of the high reaction
temperatures (100–140 °C). Asymmetric
Diels–Alder reactions were screened with
different families of chiral catalysts, dieno-
philes and dienes, but led to a complicated
mixture of diastereoisomers with low ee’s
of the desired isomers.

For first urgent material deliveries, the
neat Diels–Alder reaction of acetoxyacry-
lonitrile (4) with diene 5 at 140 °C could be
exploited thanks to a new twist in the reac-
tion sequence (Scheme 5). Original reports
hydrolyzed the Diels–Alder product 12 to
the symmetrical diketone rac-6 where the
two ketone functions are not differentiated.
We noticed that 12 could be selectively ke-
talized to 13 thus paving the way to mono-
protected ketone 14. Addition–elimina-
tion with PhMgBr afforded rac-1 that was
separated on chiral stationary phase with
a surprisingly high productivity. As the
delivery time of both the diene 5 and the
dienophile 4 was several months (and the
costs being $8’000/kg), both were pro- temperature (°C)
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at 215 °C in a coiled steel tube, and the
Diels–Alder product 17 was isolated af-
ter distillation in a yield similar to that of
the batch reaction. The inherent increase
in safety caused by the small volumes and
the achieved productivity were offering ad-
vantages over the batch mode.[11]

Scheme 6 summarizes the three
Diels–Alder reactions to the Diels–Alder
products 12, 17, and 18 using diene 5.
Consecutively, they were developed to
produce 2 kg (with dienophile 4), 100 g
(with 6), and 180 kg (with 7) of racemic
1. The latter Diels–Alder reaction deliv-
ered enough material to produce the API
for Phase 1 clinical testing. The success of
these approaches relied on a surprisingly
efficient racemate resolution by HPLC.[12]

At the outset of this campaign, we
struggled to find examples of Diels–Alder
reaction scale-up to kg or ton scale, and

low in order to be able to run this at many
locations in a robust manner. The final neat
continuous Diels–Alder reaction of the di-
ene 5 with acrylonitrile 6 was performed

ing failure scenario.[10] We required infor-
mation about the Time to Maximum Rate
under adiabatic conditions (TMR

ad
), de-

rived from isothermal DSCmeasurements,
and information about the Maximum
Temperature of the Synthesis Reaction
(MTSR). Fig. 3 shows the batch reaction
of 4 and 5 (213 g) in a reaction calorimeter
and indicates that the temperature which
can be reached after a cooling failure (T

cf
)

passes its maximum at MTSR = 245 °C
after 2.2 h.At this time, the batch tempera-
ture is 114 °C with a thermal conversion of
15%. The Diels–Alder reaction of 4 with 5
is run in full-batch mode without solvent
barrier. At MTSR = 245 °C, decomposi-
tion would set in immediately (see DSC),
leading to a final temperature of >400 °C.

The reaction calorimetric data of 5 and
7 led to a similar picture, i.e. decomposi-
tion would be triggered in case of a cooling
failure. Therefore, the Diels–Alder reac-
tion was diluted with toluene to mitigate
the adiabatic temperature rise. Fig. 4 shows
reaction calorimetry of the diluted batch
process with 5 and 7 at 80 °C. Now, the
MTSRwas lowered to 132 °C as compared
to 250 °C in the undiluted case, and the
probability of a runaway was significantly
reduced based on modeling of the kinet-
ics.[9] The diluted Diels–Alder reaction of
7 and 5 to the bicycle 18 was deemed safe
for a scale of 100 kg reaction mass in the
reactor. An adiabatic situation in the worst
case, i.e. at the end of the heat ramp, would
result in a MTSR of 132 °C. The boiling of
toluene starts already at 112 °C, acting as a
thermal barrier. This Diels–Alder reaction
was reproduced several times on 54–147
kg sized batches in a 200-L Hastelloy reac-
tor giving similar yields and purities.

During the early phase of route scout-
ing, the Diels–Alder reaction of acryloni-
trile with 5 was one of the first approaches
with a chance for scale-up. As the maxi-
mal scale of the Diels–Alder reaction was
still limited to 100-kg batch size based on
hazard assessment, we developed a flow
application as a contingency (Fig. 5). The
target was to keep technical complexity
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our own experience was far from extensive
in this field. Based on the rare use of the
Diels–Alder reaction at industrial scale,
process chemists seem to lock up the
Diels–Alder reaction a priori into the field
of ‘non-scalable’ transformations. We en-
deavoured to scout for large-scale applica-
tions of this highly atom-efficient reaction
and were pleased to find more than 160
examples from pharma, agrochemical, and
fragrance industry. Our work illustrates the
benefit of overcoming such prejudice.[13]

Assembling the Drug Substance
ACT-280778

With the required chiral building block
1 at hand, the downstream chemistry to the
API ACT-280778 could be started. The
route development and kg-production of
the benzimidazole side chain 3 and the last
steps to theAPI have been described in de-
tail.[14] In the following, we summarize the
salient features of the final process.

Benzimidazole 3
Benzimidazole 3 was derived from

cheap starting materials: 1,4-dime-
thoxybenzene (19), nitric acid, and
N-methylpyrrolidinone (NMP, Scheme 7).
It is noteworthy that all atoms of the solvent
NMP end up in the building block, render-
ing this approach highly atom-efficient as
compared to the classical two-step build-
up of the benzimidazole. The nitration of
19 occurred in moderate regioselectivity to
give the highly energetic dinitro compound
20[15] in 100-kg batches (it was not shock
sensitive according to falling hammer test).
The undesired 1,4-dinitro isomer of 20was
successfully purged after hydrogenation
over Pd/C to the phenylene diamine 21,
most probably via formation of para-chi-
noid intermediates forming side products
that ultimately remained on the filter cake.
The filtrate containing 21was highly sensi-
tive to air: it rapidly formed a black tarry

product. By way of HCl salt formation,
the purity (>99% a/a and w/w) and stabil-
ity were highly improved. The benzimid-
azole 3was formed by heating 21.HCl with
20% HCl in NMP at 102–104 °C for a day.
Like the phenylene diamine 21, 3 is highly
water soluble and required the polar, not
water-immiscible solvent n-butanol for ex-
traction. Residual tarry by-products were
removed by a charcoal treatment. The best
crystalline form of 3 that was both stable
and allowed for the highest upgrade in pu-
rity was the mono-hydrate of the dihydro-
chloride salt. Its reproducible production
required a careful azeotropic adjustment
of the water content (2.5–3.5%) during
the reactive crystallization from butanol–
water. A total of 141 kg of 3.2 HCl was
successfully produced as off-white powder
( 99.5% a/a (HPLC), 99.2%w/w (NMR as-
say), ash <1% w/w, Pd <0.1 ppm).

Last Steps Towards ACT-280778
En route to the API ACT-280778, the

key challenges were the creation of the

tertiary alcohol 2, the oily nature of most
intermediates, and the identification of a
suitable solid form of the API (Scheme 8).
The addition of the enolate of tert-butylac-
etate to 1 at –78 °C gave β-hydroxyester
22 in a diastereomeric ratio (dr) of 2.2 to
3.3:1. This moderate endo-selectivity can
be attributed to low difference in steric bulk
of the CH

2
–CH

2
bridge and the CH=CH

bridge. We took profit of the crystallinity
of 2 that allowed for an efficient upgrade
of the purity, thus purging the undesired
diastereoisomer. Towards this end, the
toluene solution of intermediate hydroxy
ester 22 was solvent exchanged to ethanol,
the solvent for the ensuing ester hydroly-
sis to 2. Extraction of the quite water-sol-
uble β-hydroxy acid 2 was best done with
2-MeTHF and a controlled solvent swap
to EtOAc led to crystallization of 2 with
excellent dr, keeping the enantiomeric
ratio (er) of ketone 1 unchanged. Amide
bond formation with the benzimidazole di-
hydrochloride 3.2 HCl to 23, followed by
reduction of the tertiary amide with LiAlH

4
gave amine 24 as foam. This was subjected
to isobutyroyl chloride and led to over-ac-
ylation with the acylation at the undesired
nitrogen of the benzimidazole being ki-
netically favored. The overacylated inter-
mediate was treated with NaOMe to afford
crudeACT-280778.As the free form of the
API is also a foam, the first syntheses of
theAPI were plagued by the absence of op-
portunities for scaleable purifications like
crystallization. To this end, we identified
the bis-oxalate salt of β-hydroxy amine 24
as a suitable solid that allowed byproducts
to be removed from the amide formation
and the reduction step. In-depth screening
of pharmaceutically acceptable salts of the
API finally culminated in the bis-maleate
of ACT-280778 that fulfilled the require-
ments like purity upgrade, stability, good
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protocol. To account for the phenylacetal-
dehyde’s (27) limited stability, it was tele-
scoped in EtOAc solution into the aldol
cyclization step that ran in the presence of
32% HCl at 50 °C for 2 h. Cooling to 0 °C,
filtration and washing afforded bicyclic
alcohol 28a as one single diastereoisomer
in excellent er as a white crystalline solid.
The dehydration to 1 using standard meth-
ods produced black tarry mixtures.[7] The
bicyclic system is suspected to be prone
to skeletal rearrangements. After exten-
sive scouting, a fine-tuned two-step pro-
cess turned out to be optimal. Alcohol 28a
was transformed into its mesylate 29 that
was telescoped into the E2 syn elimination
in 2,4,6-collidine at 143–150 °C for 1 h.
Neutralization, extraction into heptane and
concentration led to crystallization of the
ketone 1 in high purity. Crystallization of
1 proved challenging due to the low melt-
ing point (66–68 °C) and its lipophilic and
unpolar nature. Control of the purity of 28a
was crucial for the ensuing dehydration
sequence to 1: phenylketone 1 of inferior
quality (i.e. <90% a/a or w/w) was impos-
sible to crystallize without oil formation.

A striking improvement in color and
habitus of 1 was achieved with this new
route when compared with the batches de-
rived from the Diels–Alder approach fol-
lowed by racemate resolution by HPLC
(Fig. 6).

A mechanistic understanding of the
strategic aldol cyclization from ketal-
aldehyde 27 to the secondary bicyclic al-
cohol 28a was crucial for the success of
this approach. Three isomers were isolated
(28a, 28b, and 28c) and their structure
proven by X-ray crystal structure analysis.
Subjecting these isomers separately to the
dehydration to 1 led to the following obser-
vations: (i) 28c did not react in the elimina-
tion sequence; (ii) 28a and 28b were com-
parable in reactivity (kinetics & purity);

hydroxybicyclo[2.2.2]octan-2-one 28a via
an intramolecular aldol reaction (Scheme
9).[7] The process (9 chemical steps, 22%
yield) is simple and volume-efficient as
demonstrated by an expeditious synthesis
of a 1-kg batch of 1 in a 30-L reactor in less
than 10 working days.

The details of the last steps to 1 on
kg-scale are highlighted in Scheme 10.
Homobenzylic alcohol 26 was oxidized to
ketal aldehyde 27with the TEMPO–bleach

filterability, easiness of drying, and com-
patibility with the formulation with excipi-
ents. Overall, this synthetic sequence de-
livered 14 kg of the API ACT-280778 for
clinical tests with a yield of 38% (7 linear
steps) from chiral bicyclic ketone 1, and
17% yield (14 linear steps) from cyclohex-
enone.

2nd Generation Routes[16]

The Diels–Alder approach (Scheme 6)
delivered enough ketone 1 for the manu-
facture of time critical API for clinical
Phase 1 supply. An enantioselective route
was required for larger scales to remove
the burden of the enantiomer separation
on large scale without the possibility of
recycling the undesired enantiomer. Two
practical routes to 1 have been developed,
both relying on catalytic enantioselective
catalysis.

2nd Generation Route 1, Relying on
a CIDT Strategy (Shibasaki)

The first approach to 1 makes use of
the Shibasaki reaction to efficiently install
one bridge head stereocenter in malo-
nate 25,[6] and features a Crystallization
Induced Diastereomer Transformation
(CIDT)[17] as pivotal step delivering the
crystalline intermediate (1R,4R,5S,6S)-6-
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mer, a thermodynamic sink. ‘Traditional’
measurement of melting points (mp) of the
main isomers was key to design this CIDT
(typically a high mp leads to low solubil-
ity).

2nd Generation Route 2,
Organocatalysis

Scheme 9 reveals a daring shortcut re-
lying on a formal [4 + 2] cycloaddition of
phenylacetaldehyde and cyclohexenone,
thus removing 6 out of the 9 steps. The
same chiral intermediate 28a could con-
ceivably be obtained in an organocatalytic
tandem Michael addition–aldol reaction
from 2-cyclohexenone and phenylacet-
aldehyde in the presence of an organo-
catalyst. A publication by Bella et al.[18]
inspired us to screen organocatalysts (4),
solvents (5), and additives (13) under vari-
ous reaction conditions with Solvias AG.
We could build upon our expertise with
the intramolecular aldol cyclization and
CIDT gathered during the development of
2nd generation route 1, allowing us to iso-
late 28a in essentially pure form and good
yield out of a reaction mixture containing
a wealth of byproducts and isomers. l-Pro-
line proved to be the best organocatalyst in
terms of activity and selectivity: a maxi-
mum of er was reached at 72:28 when the
reaction was run in the presence of Hünig’s
base in toluene at 45 °C for 4 d, whereas
the er was 86:14 when the reaction was run
at 0 °C at the cost of a 21-day reaction. The
dr (28a:28b) started at 50:50 and grew to
> 92:8 at the end of the reaction, pointing
to another nice example of a CIDT for this
tandem Michael–aldol reaction with many
products in equilibrium. The enantiomeric

(iii) 28a was obtained in highly pure form
by simple filtration of reaction. These re-
sults guided us to develop this transforma-
tion into a CIDT with 28a as target isomer
for the screening of reaction parameters.
On industrial scale, a CIDT represents a
‘dream’ reaction as the reaction, the isom-
erization (via the enol of the phenylacetal-
dehyde intermediate), and the crystalliza-
tion occur in just one vessel without the
need for additional downstream unit oper-
ations like extractive workup. Scheme 11
depicts the observed diastereoisomeric
ratios of both starting material (27, the
enol form of the deprotected ketone of 27
is drawn for clarity) and isomeric products
28 of the intramolecular aldol reaction.
In-process controls of reaction mixtures
indicate that a plethora of conceivable in-
termediates (not shown) were formed after
20–30 min. When the reaction was aged at
50 °C for 2 h, two isomers, 28a and 28b
prevailed. The success of this transforma-
tion relies on the precipitation of the least
soluble 28a from the reaction mixture, thus
pushing the equilibrium to this desired iso-
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Chiral Dienes

Chiral dienes have gained consider-
able interest in metal-catalyzed asymmet-
ric processes since 2003, notably for the
catalytic enantioselective addition of aryl-
boronates to unsaturated ketones or esters
where these stable chiral ligands replace
notably the chiral phosphines.[21] Besides

cause high production costs. It is notewor-
thy that the Shibasaki route led to >60%
reduction in COG even though the number
of chemical steps increased from 3 to 9.
This apparent discrepancy stems from the
low number of isolated intermediates (3),
the high yields and selectivities combined
with the ease of isolating and purifying the
secondary bicyclic alcohol 28a.[7]

excess (44%) was acceptable as the up-
grade to the desired er of 98:2 (for down-
stream chemistry towardsACT-280778) or
>99.5:0.5 was achieved by crystallization
(Scheme 12).[8] In contrast to the report
by Bella et al., high selectivities were ob-
tained without a cinchona alkaloid on top
of chiral secondary amine organocatalysts,
even in the absence of a base like Hünig’s
base.

Fig. 7 shows the pictures of a small-
scale lab reaction (to 28a) to demonstrate
the ease of processing. After achieving full
conversion, the suspension was filtered at
20 °C, and the filter cake was consecu-
tively washed with water (3 × 0.5 L) and
toluene (3 × 0.4 L). Drying under air for 2
h gave highly pure 1.

Potential transition states for the
Michael addition to cyclohexenone are
shown in Scheme 13 based on the semi-
nal work published by List and Houk,[19]
and Eschenmoser and Seebach,[20] respec-
tively. The distribution of the diastereoiso-
mers 28a and 28b does not seem to be de-
termined only by the steric and electronic
factors governing the organocatalytic
Michael–aldol reaction but also by the
thermodynamic stability of the products
based on the above equilibrium between
28b and 28a by retro-aldol reaction via
epimerization of the benzylic position.
The predominance of isomer 28a over 28b
could hence result from the differences in
solubility as discussed above (CIDT).

Table 1 compares the key attributes
of three approaches to 1 that successfully
served different purposes for the growing
demands in the drug development pro-
cess. Whereas the yield is similar for all
the three routes with the number of steps
ranging from 3 to 9, the number of solvents
went down to 3 and special technologies
like running the scale-limited hazardous
Diels–Alder reactions, handling of cya-
nides, or large-scale HPLC or Simulated
Moving Bed (SMB) technology are no lon-
ger required. The major cost driver of the
Diels–Alder route, i.e. the racemate resolu-
tion was successfully removed by the two
2nd generation routes. The organocatalysis
route runs without any metal that would
call for expensive waste treatment on scale.

The overall reduction of the Cost of
Goods (COG) for the manufacture of phe-
nyl ketone 1 with the 2nd generation route
2 (organocatalysis) as calculated on a 1
metric ton scale was impressive (>95%)
as compared to the Diels–Alder route
(Fig. 8). The new process is operationally
very simple and uses raw materials that are
readily available and cheap. On industrial
scale, the low cost of l-proline and the ease
of upgrading the ee by crystallization more
than compensates for the low enantiomeric
excess. Designer organocatalysts that are
often used at similar high loadings can
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creased by a factor of approx. 10, whereas
the PMI regarding the reagents decreased
by a factor of 38.[23] The operational sim-
plicity, the low number of isolated interme-
diates, and the low cost of the organocata-
lyst (l-Pro) more than counterbalanced the
low ee (44%) of the organocatalytic step.

This set of ten C1-symmetric chiral
bicyclo[2.2.2]octa-2,5-dienes has been
tested as ligands in four Rh-catalyzed
arylation reactions: 1,4-addition to cyclo-
pentenone, cyclohexenone, and tert-butyl
cinnamate, and the 1,2-addition to N-[(4-
nitrophenyl)-sulfonyl]imines.[24] Scheme
16 depicts one of these reactions, the chal-
lenging 1,4-addition of arylboronic acids
to tert-butyl cinnamate 31 that smoothly
afforded the diphenylmethine 32 in high
ee. Several of the novel dienes (30) gave
higher enantioselectivities than the bench-
mark ligands reported in the literature.

Conclusion

This work exemplifies a recent para-
digm in the pharmaceutical industry: com-
panies, especially smaller or mid-sized
ones, are no longer covering all major
fields of expertise with regard to both the
equipment and staff. Instead, they choose
to tap into the vast pool of service providers
available worldwide in order to focus their
own resources on the strategically most
pivotal assets. The screening capabilities
and the excellent track record of Solvias
AG helped us to find the best catalyst that

not only fulfilled acceptable performance
but was of low cost. The use of the highly
reactive Diels–Alder reagents and the re-
actions would not have been reduced to
practice without the thorough safety as-

ligand 30a, starting from cyclohexenone.
The PMI was calculated without solvents
and water to account for the early research
stage of the published route that was used
for comparison.[22]The overall yield has in-

other factors like stability and scope, the
widespread use of any new class of ligands
is influenced by their availability that is
ultimately related to the ease and cost of
their preparation. Specifically, Hayashi’s
bicyclo[2.2.2]octadiene (bod*) ligands
30a and 30b, which display a broad scope
and excellent selectivities, are still lacking
a simple synthesis in terms of scalability
and costs (Scheme 14).[22]

Having secured access to large amounts
of the ketone 1, we were intrigued to offer
an easy and affordable access to this class
of ligands as just two steps were required
to synthesize Hayashi’s bod* ligands from
1 (Scheme 15).[8]

Ten new C1-symmetric chiral dienes
(30) were prepared (Fig. 9). This new and
authoritative class of ligands is now acces-
sible on kg-scale at much reduced costs.
The feedback from academia was very
positive, and we expect that these ligands
will be used more frequently to fine-tune
asymmetric catalysis.

The Process Mass Intensity (PMI: kg
reagents required to produce 1 kg of final
product), a metric commonly used to as-
sess the efficiency of a process, was cal-
culated for this new approach to Ph-bod*
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Table 1. Route comparison to produce 1

rac. Diels–Alder
(chiral chrom.)

2nd generation
route 1

(Shibasaki)

2nd generation
route 2

(organocatalysis)

chemical steps 5 9
3 isol.

intermediates

3
2 isol.

intermediates

yield 15% 15–26% 17%

solvents 5 6 3

special technologies high-temp. reaction
cyanides,

chiral chrom.

none none

cost drivers chiral chrom. Pd / ligand,
HexLi, LiAlH

4

no metal
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Man (EIM), the Phase 1 studies, and, ul-
timately, to market. If a robust route can
be established early in drug development,
this will save later expenses arising from
trouble shooting on the manufacturing
floor. Late route changes are associated
with a higher regulatory burden. Another
argument to invest into early Process R&D
is that route development close to the first
kg-batches is typically more expeditious
due to the immediate availability of both
the process know-how and ideas of the in-
volved chemists and the intermediates at
the site of manufacture. This frontloading
investment also fulfills the QbD require-
ments purported by the FDA: the earlier a
robust route is designed and developed, the
shorter is the overall time and investment
until the process understanding meets the
stringent requirements for validation and
registration.
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