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Abstract: Imaged-based screening has been developing extremely quickly in the past 10 years. Academic
institutes quickly realized that the discovery capacity of this technology was huge, allowing the automatic
detection and quantification of complex cell phenotypes. Associated with chemical or genetic perturbations,
high content screening is the method of choice for a deep system biology analysis. The evolution of high-content
screening is mainly due to the recent progress in the development of fast and high quality automated imagers and
of a plethora of new very bright fluorescent markers, so that almost any cellular element can be seen and imaged.
In this paper we review and summarize the major steps in the development of an image-based screening project.

Keywords: High-content screening · Image-based screening

Introduction

Todaybiomolecular screening isno lon-
ger the exclusive massive discovery tool of
the pharmaceutical industry. Indeed, much
effort is being invested in academia into
setting up such research programs. The
discovery of RNAi technology and the de-
velopment of human genome libraries cer-
tainly have largely contributed to this new
area of research.[1] The first siRNA screens
were performed in the early 2000s as were
the first deep genome-wide analysis, help-
ing to create a new discipline, which is to-
day referred to as systems biology.[2]

Unlike any previous research project,
the screening campaigns by academia labs
allowed the extremely fast discovery of
new compounds, genes or pathways, be-
cause of the automation of standardized

biological or biochemical assays. In ad-
dition to drug discovery, this technology
has already been applied to many areas of
Life Sciences, including stem cell biology,
viral infection, cellular processes, parasite
entry, toxin transport, subcellular organelle
maintenance, cancer biology, lipid homeo-
stasis.[3]Today screening projects are being
developed in most academic institutions,
and Systems Biology has moved into the
limelight,[41] in particular in Switzerland
with the SystemsX initiative (http://www.
systemsx.ch/).

Screening is all about obtaining quan-
titative information through the full auto-
mation of each step of the process: sam-
ple preparation, assay, reading and data
analysis. Therefore, many universities and
academic institutes have invested a lot in
the development of screening facilities,
equipped with automated tools and robots
to run screening projects. Conversely, the
manufacturers providing this equipment
had to adapt their offers to the academic
world and specific needs. Today, we have
access to extremely powerful equipment,
which can run any steps of a screening
project.[5]

Light microscopy, including fluores-
cent imaging, is central to research in cell
and molecular biology to visualize the be-
havior of complex biological systems, and
is itself undergoing major developments in
recent years.[6] Hence, the screening com-
munity had to come up with automated
tools capable of running usual biological
assay used in research. This led to auto-
mated microscopes that have been, invent-
ed in mid-to-late 1990s,[7] extensively de-
veloped over the past decade, and achieve

today high quality imaging in a very fast
scanning mode. Automated microscopes
are now able to acquire thousands of high
quality images per hour, which in turn re-
sults in very large amounts of digital image
data. To cope with this new data accumu-
lation, laboratories have developed new
software for automated analysis in order
to extract as much information as rapidly
as possible.[8] The aim of this paper is to
highlight some of the key steps neces-
sary to develop and run your image based
screening project.

Assay Development

To design an assay in a screen for-
mat, one has to keep in mind that the rule
number-one for such a project is to repeat a
simple experiment under exactly the same
conditions thousands of time with only one
parameter that changes at a time in order
to extract highly quantitative information.
Hence, it is not always so straightforward
to transfer a bench experiment to an au-
tomated high-throughput format (Fig. 1).
The assay has to be extremely robust and
consistent and should exhibit the best dy-
namic range that can be achieved in order
to be able to select hits out of the cloud
of data points. Today most high content
screens (HCS) are run on cell lines or pri-
mary cells, but an increasing number of
projects use yeast cells, bacteria, worms,
parasites or small organism embryos.

Screens are mainly run in microtiter
plates with a format varying from 96 to
1536 wells. In HCS, we are using high
quality imaging plates, with a particularly
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tively large quantity, the costs of the assay
have to be considered. To optimize costs
and staining reproducibility, the use of an
automated plate washer (Fig. 1) is manda-
tory. This will make it possible to reduce
the volume of reagents in each well, and
will guarantee that each well from each
plate from each batch is treated in a highly
consistent manner.

It is highly recommended that a pilot
screen be run once the optimization steps
look promising with good and consistent
results. The use of a small library of com-
pounds or siRNAs will make it possible to
validate the assay for the screening cam-
paign or to make some new adjustments at
all levels of the experiment from the assay
to the image analysis (quality control, posi-
tive control consistency, analysis pipeline).
In addition, a pilot library may also help
identify new positive controls, potentially
stronger or more relevant for the biology
of interest or to discover new phenotypes
that could require somemodification of the
image analysis pipeline (Fig. 1 and 3).

Automated-Microscopy Reading

Over the past 10 years, automated mi-
croscopes have drastically evolved to reach
the image quality almost identical to that of
any standard manual microscope. Today,
three main actors (Molecular Devices™,
GE healthcare™ and PerkinElmer®) of
this field are leading the market with mi-
croscopes showing quasi-equivalent ca-
pacities. These microscopes are equipped
with large field of view and low-light im-
aging sCMOS camera sensor, combined
with strong LED light and fluorescent fil-
ters or colored laser. The recent fast evo-
lution of numerical imager and source of
light (much more stable) has been of major
importance for the evolution of these au-
tomated microscopes. Standard objectives
providemagnificationpossibilities from4×
to 100×, allowing most favorable imaging
conditions for any object according to its
size. When setting up an assay, good care
must be taken to avoid any problems due to
uneven illumination or image artifact. The
laser-based image autofocus offers ideal
image conditions for each field of view
and the focus point can be adjusted for
each object analyzed in the sample. These
microscopes can also be used for live cell
imaging, because they are equipped with
temperature, CO

2
, and humidity controls.

However, live cell imaging is rarely suit-
able for large scale screening campaigns
because of the time scale (e.g. see below).

The automated microscope is driven by
a dedicated software, so that image acqui-
sition protocol can be customized, saved
and used for each plate of a screen. The in-
terface of the software is quite user friend-

a component of the pathway, and since it
might be difficult to clearly identify targets
of the biological pathway when running
the screen. Obviously, one also needs to set
up the assay under the same conditions as
used in the HCS itself, including by using
the same automated tools. Once optimized,
the assay has to be run under very stable
conditions in secured incubators and any
variation in temperature, humidity or CO

2
must be avoided. This will limit the dan-
ger of plate edge effects, a problem that is
frequently observed and is mainly due to
uneven evaporation between plate wells.

In most cases, HCS uses fluorescence
imaging, in order to visualize a reporter
present in the cell for example on an or-
ganelle, and therefore staining and sample
preparation must be optimal. In immuno-
fluorescence assays, the antibodies need to
be specific in a very robust way, includ-
ing a good signal-to-noise ratio, and no
fluorescence bleed-through between fluo-
rescence channels used in the detection.
Today, commercially available antibodies
can be obtained against a vast number of
endogenous proteins present in many, if
not all subcellular compartments. Since
the primary and secondary fluorescent an-
tibodies can be expensive and used in rela-

thin and flat plastic bottom. These speci-
fications are needed to ensure good and
consistent finding of the autofocus plane
by the microscope and optimal image reso-
lution with high magnification objectives
(most often with short working distances).

To optimize HCS assays, a certain
number of parameters must be properly
adjusted: the cell line (biological model) to
be used, the cell density in the well, the cell
growth over the time period of the assay,
the amount of reagent to test, monitoring
of the potential toxicity under basal condi-
tions, the efficiency of the treatment (e.g.
knockdown efficiency in RNAi screens),
as well as the sample fixation and staining
conditions. To facilitate the optimization
of these critical parameters, it is essential
to use an appropriate positive control. The
choice of this positive control can be criti-
cal for the success of the screening project.
The control has to be of the same chemical
nature as the molecules to be screened in
the assay (e.g. small molecules or siRNAs).
The positive control should not directly
target the reporter used in the assay, but
a component of the biological pathway of
interest. This is of particular importance,
since one cannot expect the same dynamic
range when targeting the reporter itself vs.
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can be defined in order to reveal and pre-
cisely quantify a particular phenotype. In
some cases, it is necessary to delete from
the analysis, conditions that can affect the
quantification (e.g. dividing or dying cell),
by implementing a specific segmentation
in the analysis pipeline to identify the
problematic objects (Fig. 2). The software
allows a visual verification of the segmen-
tation quality, by applying the generated
mask on the image. It is very important to
double-check the masks on several images
to be sure that it is applicable to all images
in the screen.

Once segmentation is done, measure-
ments are extracted from each mask and
channel. One should extract as many
meaningful values as possible, but still
limit the number of parameters that are
expected to vary in the analysis, since a
phenotypic analysis will only be feasible
if a precise description of each element
of the image has been collected. The ap-
propriate phenotypic description of a cell
may require between 100 and 200 descrip-
tors, which can be very diverse and reflect
several parameters, including object size,
intensity, shape, count, localization, granu-
larity, texture, distribution, co‐occurrence.
An analysis based on a whole-cell mask as
main object is often very useful, because
the dataset is then generated ‘per cell’ and

Screener®, MetaXpress®, HCS Studio™,
Harmony®, IN Cell Analyzer™). These
software are dedicated to image acquisi-
tion and analysis, and they are mostly very
well designed but not always fully intui-
tive – serious training sessions are needed
in most cases.

The image analysis will be separated
in two main steps: the segmentation of the
image and the extraction of the measure-
ments. The goal of the segmentation is
to cut the image and generate masks for
each individual object visible on the im-
age (e.g. whole cell, nucleus, organelle,
viral particle). To identify each object, the
software uses several parameters, like size
or intensity (Fig. 2), and thus to facilitate
the segmentation process the image can be
modified to reduce the background and to
highlight the object of interest (e.g. decon-
volution, top hat noise reduction). These
modified images will be used for optimal
masking but cannot be used for quantifica-
tion, since the intensity information is lost.
The mask is then applied onto the origi-
nal image, and can be modified accord-
ing to the needs (e.g. grown or shrunk),
as well as associated (e.g. to obtain a cell
mask from separate nuclei and cytoplasm
masks) or dissociated. Specific areas (e.g.
perinuclear region or the cell edge) that
contain individual objects (e.g. organelles)

ly, in most cases it does not take more than
half a day to become pretty familiar with
the basic commands. According to one’s
wishes, the software can guarantee the
imaging of a pre-established number of
fields. Alternatively, it can adapt the num-
ber of images acquired for each condition
to a pre-set minimum number of objects
that are required (e.g. number of cells) be-
fore moving on to the next well. For sta-
tistical relevance of the data, a minimum
number of 1000 to 2000 events (cell, object
of interest) would be required for each con-
dition. The number of images and the mag-
nification has to be adjusted accordingly.
The microscope can acquire a stack of im-
ages that can all be saved and may be used
for a 3D reconstruction or compressed to a
single image for maximum projection. One
should bear in mind that despite fast im-
aging capability, the acquisition of images
from a complete microtiter plate in several
colors and with several fields per condi-
tion can take hours. It is important to keep
this in mind when running large batches
of plates, in particular to ensure that the
samples to be imaged remain stable over
this time course.

A microscope with high-speed imag-
ing will automatically generate a large
amount of data, e.g. terabytes every day
under routine conditions. Therefore, the
development of a safe and large storage
system has to be planned before the instal-
lation of the microscope, and the IT side
of this equipment plays a major role. It is
not always easy to integrate all software
and hardware. The data pipeline has to be
well-defined and structured to ensure no
loss of information. The acquisition soft-
ware needs to be connected to a database
storing metadata information (e.g. user
name, experiment name, plate ID, well
content), and the images should be stored
on a secured server. The analysis software
should be capable of retrieving the images
and the metadata, and finally the numerical
data generated should be accessible to the
data analysis software. The integration of
such a complex pipeline is not an easy task,
and it is even harder to make it available
to any user.

Image Analysis

The automated microscope will gen-
erate a very large number of images, and
of course manual reviewing of these is
unrealistic in most cases. An HCS project
thus implies the capacity to automatize the
image analysis.[9] Several software have
been developed that allow users to extract
as much information as possible from
each image,[10] including freeware (e.g.
CellProfiler,[11] EBImage,[12] Image J[13])
and commercial software (e.g. Genedata
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Fig. 2. Examples of image segmentation performed with MetaXpress®Custom Module Editor. A.
Identification of different cell population based on the presence/absence of fluorescent stain-
ing. Masking of KO and WT cells infected or not by fluorescent VSV virus. B. Left: Immuno-
fluorescence images of fixed HeLa cell, acquired with an ImageXpress® Micro XLS from Molecular
Devices™, Nucleus in blue, early endosome (EE) in red, recycling endosome (RE) in pink, late
endosome (LE) in green. Right: Advance segmentation of early and late endosome in HeLa cells.
Generation of a main cell mask subdivided in cell layer the pixel distance from the nucleus. The
endosome masks are attributed to a specific region in the cell. Border, dividing and dying cells
have been excluded from the final mask, by detecting them or through filtering different channels.
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pathways, or modes of action. Indeed, the
phenotype numerical description can be
done with such high precision that simi-
lar activity of compound or RNAi could
be detected with the statistical analysis of
numerical data.

Conclusion

Any new user of automated micros-
copy will realize very rapidly the high dis-
covery potential of the technology. Unlike
any precedent microscopy method, HCS
makes it possible to obtain independent
deep cell phenotypic analysis on a sta-
tistically relevant (very) large number of
events. It is worth emphasizing that this
major advantage of automated microscopy
applies not only to screening campaigns
using compounds or siRNAs, but also to
routine work in research labs. Unbiased
and highly statistically relevant data can be
obtained for essentially any fluorescence
microscopy experiment through the quan-
titative analysis of a very large number of
events by automated microscopy.

While the technology necessary for
HCS is available, both at the hardware and
software level, it is not straightforward
to become an expert and to run a screen.
However, screening facilities are being
developed by academic institutions and
provide the necessary expertise and equip-
ment.

Some may be tempted to believe that it
will always be possible to find ‘something’
of interest by testing so many different
perturbations. However, if the assay is not
developed properly, e.g. with a good dy-
namic range between positive and negative

cycle arrest). In this case, the software is
trained to recognize a specific phenotype
by the analysis of specifically affected
descriptors – a ‘per cell’ analysis of the
data is mandatory to ensure proper teach-
ing and detection of the desired pheno-
type.[3a,19] The goal of those two methods
is different and can depend on the screen.
Unsupervised clustering may lead to the
discovery of unpredicted phenotypes, dif-
ferent from wild type, and caused by the
treatment (Fig. 3), while machine learning
leads to the identification of profiles or
patterns previously observed with a posi-
tive control. Although the two methods
can be complementary, deep phenotypic
analysis usually implies the discovery of
unexpected effects of the treatment and for
this the unsupervised clustering would be
more relevant.

The subsequent bioinformatics analy-
sis is performed using the output of the
phenotypic analysis. Several bioinformat-
ics databases are available and can help un-
derstand the biology behind the phenotypic
analysis. The compounds or genes clusters
need to be investigated using structure ac-
tivity analysis or biological pathways data-
base (e.g. Gene ontology – http://geneon-
tology.org/, Kegg pathway – http://www.
genome.jp/kegg/pathway.html, DAVID –
https://david.ncifcrf.gov/). The phenotypic
analysis can be extremely powerful to
drive the identification of compound tar-
get, e.g. the small molecule U18666A[20] is
able to phenocopy the cholesterol storage
disorder Niemann-Pick C.[21] In a pheno-
typic analysis, a screen carried out with
small molecules can be combined with ge-
netic screens after RNAi, leading to a fast-
er identification of the biological targets,

each individual cell is analyzed indepen-
dently. This may allow the identification of
a rare event or phenotype lost in averaged
image data, and may help revealing popu-
lation context effects.[14]

This image analysis of a full experi-
ment is computer-intensive and may take
hours to days of calculation. As mentioned
above, it is advisable to secure appropri-
ate IT support and to run the analysis on a
core cluster.

Data Analysis

The output of the image analysis results
in a large amount of numerical data, which
need to be processed to yield the analy-
sis of the phenotype. The true phenotypic
analysis begins at the data analysis level,
when numbers are describing cells and cel-
lular objects in the images. Not only is it
impossible to manually review all images
in a screen, but also the human eye may
fail to associate some parameters (e.g. po-
sition, intensity, size) or to separate mildly
different phenotypes. The descriptors and
numbers generated with the image analy-
sis render each object unique and precisely
defined: a proper analysis will allow ap-
propriate data mining and hit selection.

The first step in the data analysis is to
establish the quality control of the screen.
It is indeed essential to ensure that no ex-
perimental artefact perturbs the screening
experiment. One needs to check the normal
distribution of the data, the consistency
between plates and replicates, the good
quality of positive and negative controls,
possible unexpected toxicity during the
experiment, and the danger of intra-plate
(e.g. edge-effect) or batch artefacts. This
step is absolutely critical, because artefacts
can mask real hits or generate false posi-
tive hits.

As discussed above, HCS cannot focus
on a single parameter, and the goal is to
provide deep phenotypic analysis and thus
to integrate all data in the analysis. Since
data are usually in very diverse scales,
some normalization is needed. The most
commonly used one is the Z-value or con-
trol-based normalization, but new methods
are constantly being developed.[8a,15] With
the normalized data it becomes possible to
carry out the phenotypic analysis in dif-
ferent ways. The unsupervised clustering
makes it possible to group in an automated
fashion similar phenotypes without prior
knowledge (e.g. organelle distribution in
the cell),[16] using statistical methods that
use all data available to cluster together
similar events (e.g. principal component
analysis[17]). Alternatively, cellular pro-
filing using machine learning allows the
automated detection of specific pheno-
types[18] that are already known (e.g. cell-
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Fig. 3. Examples of phenotypic data analysis performed with AcuityXpress® on image analysis Z
normalized data set. Each image is quantified with more than 50 descriptors. A. PCA analysis per-
formed on a targeted siRNA screen. The proximity of the negative control dots and the duplicate
siRNA dots confirm the quality of the screen assay and of the image analysis performed. B. Data
hierarchical clustering on small molecule screen data. The analysis connects similar phenotypes
and gives an estimated distance between them. C. Phenotype clustering by self-organizing map
method performed on a small molecule screen. The clustering highlights compound families in-
ducing similar phenotype on tested cells. Each column is a descriptor, each row is a compound
test, and the coloring is according to Z-score value.
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conditions, the output data may look like
a complex cloud of points that cannot be
interpreted.Also, not every experiment can
be run on a screen format – proper advice
before starting can save a lot of time and ef-
fort. One should remember that the screen
output is always limited by the detection
system – an inadequate assay cannot pro-
vide adequate data. The quality of the out-
put depends on the quality of the assay, as
well as its development and optimization.
Trying to save time by skipping necessary
validation steps can be very counter-pro-
ductive and rarely saves time in the end. It
is important to keep in mind that a screen
campaign is a one shot experiment, and is
very costly not only in reagents but mostly
in the downstream efforts invested in the
subsequent analysis of possible targets.

The second somewhat complex aspect
of an HCS screen is the analysis of the
data. Thanks to the recent development of
several analysis softwares, it is becoming
relatively straightforward to obtain a good
image analysis followed by a detailed phe-
notypic analysis. The image analysis tools
allow deep image processing and extrac-
tion of a large number of features so that
the description of the phenotype becomes
extremely precise. With good logic and
knowledge of the biology behind the assay,
it is possible to develop an analysis pipe-
line in few hours. The analysis of a screen,
however, can take months or even years,
andmay extend with findings coming from
the screen itself or with other discoveries.
Indeed, the amount of information content
in each image is such that it is clearly im-
possible to extract every relevant informa-
tion with the first analysis. Therefore, step
by step, the analysis will focus on specific
new phenotypes, perturbations or com-
pound clusters and a constant update of
the image analysis pipeline will be need-
ed. Hence, the knowledge extracted from
a ‘good’ image-based screen is clearly
incomparable with any other screening or
research technique.

At the University of Geneva, with the
support of the NCCR Chemical Biology
(http://www.nccr-chembio.ch/), we have
developed the ACCESS-Geneva screen-

ing facility. We have established a fully
equipped wet lab able to run any type of
screening, with a clear focus on high con-
tent screening. We have also developed a
complete dedicated and customized IT
structure to store, on a secured server, and
analyze the data, with dedicated software,
which we make available from any com-
puter connected to internet. Today, we have
an expertise to drive almost any image
based screen project, thanks to a strong ex-
perience in assay development and strong
knowledge in image and data analysis.
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