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Abstract: Alkynes and nitriles are important functional groups that serve as versatile building blocks in organic
synthesis and find applications in material and medicinal sciences. A convenient and straightforward access to
both classes of compounds under mild conditions is, therefore, highly desirable. Herein, we disclose the decarb-
oxylative alkynylation and cyanation of broadly available carboxylic acids using photoredox catalysis and hyper-
valent iodine reagents. Choices of both catalysts and reagents were crucial. Computational and experimental
studies revealed two different possible mechanisms that are dictated by the oxidation potential of the reagents:
radical for alkynylation, ionic for cyanation.
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The chemistry surrounding alkynes and
nitriles is extraordinary rich and useful.[1,2]
In particular, aliphatic alkynes or nitriles
have a considerable potential as building
blocks in organic synthesis and are also
broadly applicable to many other areas of
chemistry, ranging from pharmaceutical
and medicinal sciences to material sci-
ences.[3] As a result the synthesis of these
compounds is extremely valuable. The in-
troduction of these two moieties usually
takes advantage of the acidity of the sp or-
bitals, leading to acetylide and cyanide nu-
cleophilic substitutions or additions to an
electrophilic center.[1,2,4] Nevertheless, in
some substrates, disconnections using this
innate reactivity are difficult. In this case,
the polarity of the functional group must
be reversed (umpolung), which Seebach
showed is a useful and efficient concept.[5]
In this regard, hypervalent iodine reagents
are of considerable interest because they
allow the umpolung of many functional
groups, such as alkyne and nitrile. Cyclic
versions of hypervalent iodine reagents,
EthynylBenziodoXolone (EBX) and
CyanoBenziodoXolone (CBX), first made
by Ochiai[6] and Zhdankin,[7] have been de-
veloped and are now broadly used.[8]These
reagents, in particular EBX reagents, have
also demonstrated great potential for func-
tionalizing carbon-centered radicals.[7b,9]
As many difficult alkynylation and cyana-
tion reactions occur at high temperature
or require transition metal catalysis,[4] an
elegant way of achieving non favorable

alkynylations and cyanations would be
to merge hypervalent iodine reagents and
visible light induced photoredox catalysis
(Scheme 1). Indeed, photoredox is a topic
of growing interest, especially for gener-
ating radicals with excellent chemo-selec-
tivity under mild conditions.[10] As trace-
less activating group and broadly available
substrates, carboxylic acids are a particu-
larly attractive class of radical precursors.
Furthermore, their decarboxylation under
photoredox conditions has already been
reported.[11] Introducing an alkyne[9a,12] or
a nitrile[13] from a carboxylic acid requires
several steps using established methods.
Therefore a one-step decarboxylative al-
kynylation or cyanation under mild condi-
tionswould provide a faster access. Herein,
we report the visible light photoredox me-
diated decarboxylative alkynylation and
cyanation of carboxylic acids using EBX
and CBX reagents.

In 2015, we began investigating the
photoredox-mediated decarboxylative al-
kynylation of aliphatic carboxylic acids
using EBX reagents.[14] N-Cbz protected
proline 4a was used as model substrate to
optimize the reaction (Scheme 2). Silyl-
protected alkynes are synthetically very
useful, due to the easily removable protect-
ing group that gives the most versatile ter-
minal alkynes. In that regard, we focused
our efforts on optimizing the transfer of
TIPS-protected alkyne. Using blue LEDs
as light source, we were delighted to iso-
late 92% yield of the alkynylated product
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were not successful in this transformation.
We then started to explore the scope

(Fig. 2) of both reactions. Both Cbz and
Boc proline were converted into alkynes
5a and 5b in 90% yield at 0.3 mmol
scale. Tetrahydroquinoline 5c was isolat-
ed in 87% yield as a single regioisomer.
α-Oxy acids were also suitable, as shown
by the conversion of tetrahydropyran-
2-carboxylic acid and THF-2-carboxylic
acid to 5d (60% yield) and 5e (quantita-
tive). Hydrocarbon carboxylic acids are
more difficult to functionalize because of
the higher oxidation potential of the cor-
responding carboxylate,[17] and we were
pleased to find that adamantane carboxylic
acid was smoothly converted to alkyne 5f
in the presence of 2 mol% of photocata-
lyst. Cyclopentane carboxylic acid yield-
ed 5g (64%) under the same conditions.
The scope of reagents was also broad and
we found that silyl- (5h, 78%), aryl-
(5i, 88%) and alkyl- (5j, 77%) substi-
tuted alkynes could be transferred. Finally,
natural light can also promote the reac-
tion without any loss of yield (89%) and
the product can be easily converted to tri-
azole 8 after TBAF deprotection followed
by Huisgen 1,3 dipolar cycloaddition with
benzyl azide.

We then turned our attention to the
scope of cyanation (Fig. 3). It was broader
for amino acids (15 examples) than the
alkynylation reaction. Various carbamate
protecting groups could be used (6a–6c,
86–92%), but also an electron-rich benzyl
protecting group is suitable for this trans-
formation (6d, 43%). Free alcohols are tol-
erated, as 6e was isolated in 90% yield. In
addition to proline derivatives, piperidine
and tetrahydroquinoline derivatives are
also well suited for this cyanation (6f, 6g,
72%, 65% respectively). N-Cbz-protected
lysine was converted to the corresponding
nitrile 6h in 83% yield. Primary, secondary
and tertiary radicals are all reactive towards
CBX, leading for example to 6i (66%), 6j
(86%), 6k (49%).Different substituents are
tolerated in the α position of the radical, as
shown with valine derivative 6l (80%) or
methionine derivative 6m (66%). We were
pleased to find out that dipeptides (6n, 6o,
56%, 55% respectively) and α-oxy-acids
(6p, 6q, 70%, 66% respectively) were also
suitable substrates for cyanation. However,
thio-acids did not lead to any nitrile prod-
uct, likely because of their ability to be eas-
ily oxidized. Hydrocarbon aliphatic acids
were not transformed well (<20 %), yield-
ing mostly the corresponding anhydrides
(along with mixed anhydrides formed with
cesium benzoate). Some valuable inter-
mediates in drug syntheses (Vildagliptin,
Idazoxan) can also be synthesized using
our new transformation.[16,18,19] The cata-
lyst loading can be decreased, as only 0.1
mol% of photocatalyst 3 was required to

ated through the combination of water and
an in situ formed iminium. Cesium ben-
zoate was still the base of choice for this
transformation, however a lower amount
(1.5 equiv.) could be used in comparison
to the previously developed alkynylation
(3.0 equiv.)

The structure of the alkyne and nitrile
sources was then investigated (Fig. 1). The
benziodoxolone core was found to be su-
perior to other structures: 1b gave only a
37% yield of 5a, monovalent iodoalkyne
1c was, surprisingly, a suitable reagent
(82%), whereas no product was obtained
with either the bromoalkyne 1d or the sul-
fone 1e. Finally, acyclic reagent 1fwas not
suitable for this transformation. A similar
trend was observed for cyanation: the es-
ter moiety of the reagent is crucial, as 2b
did not furnish the expected product, giv-
ing instead THF-2-carbonitrile. Changing
the stereoelectronics of the CBX core with
an electron-withdrawing group (2c/2d) or
electron-donating group (2e) improved
neither yield nor reaction time. No nitrile
product was found with acyclic reagent 2f.
Finally, classical cyanide sources, e.g. to-
syl-cyanide, bromocyanide or iodocyanide

5a after only 5 h of irradiation using 1.5
equiv. of TIPS-EBX (1), 3 equiv. of cesium
benzoate and 1.0 mol% of photocatalyst
Ir(dF(CF

3
)ppy

2
)dtbbpyPF

6
(3) in a 0.2 M

DCE solution. Screening various bases
showed the superiority of cesium salts, es-
pecially cesium carboxylates. Fluorinated
phenylpyridinato ligands (C-N ligands)
for the iridium-based photocatalyst were
found to be crucial for the reaction, while
the classic Ru(bpy)

3
Cl

2
and fac-Ir(ppy)

3
catalysts were unsuccessful for this trans-
formation.[15]

Encouraged by this newly developed
alkynylation, we wondered if another type
of Csp3-Csp coupling could be achieved
under similar photoredox conditions. This
led to our investigation of decarboxylative
cyanation (Scheme 2).[16] After optimiza-
tion (Scheme 2), substrate 4a was suc-
cessfully converted into the corresponding
nitrile 6a after 4.5 h of blue LED irradia-
tion using 1.5 equiv. of CBX reagent 2 as a
cyanide source and 1 mol% of photocata-
lyst 3. THF was found to be the best sol-
vent. Molecular sieves were important to
avoid the formation of the hemiaminal side
product 7, which we postulate was gener-

Scheme 1. Our strategy for the decarboxylative alkynylation and cyanation of carboxylic acids.

Scheme 2. Optimized conditions for the decarboxylative alkynylation and cyanation.
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obtain 0.60 mmol of the expected nitrile 6a
(1 mmol scale, 60% yield, 48 h), meaning a
turnover of 600. Furthermore, this photore-
dox-mediated cyanation can be promoted
by sunlight in only 4 h irradiation (90 %).

Comparing the two reactions reveals
that photocatalyst 3 can be used in both
cases[20] and the best structure of the hy-
pervalent iodine reagent is the most simple
benziodoxolone core. However, broader
scope for amino acids is obtained in the
cyanation reaction, along with a lower re-
activity in the case of acids not stabilized
by a heteroatom in the α position. Another
difference is the formation of hemiaminal
side product 7, which was suppressed us-
ing molecular sieves in the cyanation re-
action, whereas this side product was not
observed in the alkynylation. These results
led us to wonder if the two described reac-
tions might follow two divergent mecha-
nistic pathways. For these two Csp3-Csp
couplings, a similar mechanism based on
the reactivity of the triple bond towards
C-centered radicals (Scheme 3, section a)
could be envisioned. In the seminal work
of Li on silver-catalyzed decarboxylative
alkynylation,[9a] the proposed mechanism
involvedα-addition of the C-centered radi-
cal (intermediate B) to the EBX reagents,
followed by β-elimination leading to the
expected alkyne product. To the best of our
knowledge, no detailedmechanistic studies
have been carried out to support this mech-
anism. Therefore, we started exploring the
mechanism of both transformations, com-
putationally[21] and experimentally. It was
found that the decarboxylative alkynyl-
ation and cyanation most likely proceed
through divergent mechanisms. The pho-
tocatalytic cycle is identical (IrIII 3 and 3*,
and IrII 3red as catalytic species), involving
the same cesium carboxylate A as the first
quencher. Indeed, Stern-Volmer studies
showed that A is an excellent quencher of
3*, while no quenching was observed with
CBX.[16,22] Because of the high reactivity
of the possible intermediates, DFT com-
putations were undertaken for the alkynyl-
ation. The commonly proposed intermedi-
ate a1 obtained after α-addition was not
located, thus excluding this pathway. As
hypervalent iodine reagents are known to
be oxidants, a single electron transfer be-
tween TIPS-EBX and the α-amino radical
B was also calculated, and appeared fea-
sible (11.3 kcal/mol, Table 1). However the
collapse of radical anion intermediate d1
into the acetylide and carboxyl radicalC is
highly disfavored (32.8 kcal/mol). Finally,
alkyne transfer happens via a 3-center tran-
sition state involving the iodine atom. It
could involve the carbon in the α position,
leading to a concerted mechanism with a
transition state bTS (17.2 kcal/mol) or the
carbon in the β position (transition state
cTS 16.8 kcal/mol), both pathways could

Fig. 1. Screening of alkynylating and cyanating reagents.

Fig. 2. Selected examples of the scope of the photoredox catalyzed decarboxylative alkynylation.

Fig. 3. Scope of the photoredox catalyzed decarboxylative cyanation.
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