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Abstract: Chemical space describes all possible molecules as well as multi-dimensional conceptual spaces re-
presenting the structural diversity of these molecules. Part of this chemical space is available in public databases
ranging from thousands to billions of compounds. Exploiting these databases for drug discovery represents a
typical big data problem limited by computational power, data storage and data access capacity. Here we review
recent developments of our laboratory, including progress in the chemical universe databases (GDB) and the
fragment subset FDB-17, tools for ligand-based virtual screening by nearest neighbor searches, such as our
multi-fingerprint browser for the ZINC database to select purchasable screening compounds, and their applica-
tion to discover potent and selective inhibitors for calcium channel TRPV6 and Aurora A kinase, the polyphar-
macology browser (PPB) for predicting off-target effects, and finally interactive 3D-chemical space visualization
using our online tools WebDrugCS and WebMolCS. All resources described in this paper are available for public
use at www.gdb.unibe.ch.
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Introduction

In principle, small molecule drugs are
quite simple. They consist of atoms con-
nected by covalent bonds, generally around
20 to 30 heavy atoms (non-hydrogen at-
oms: mostly carbon, nitrogen, oxygen,
sulfur and halogens) connected by single,
double or triple bonds forming combina-
tions of rings and branches. What defines
the identity and the chemical and biological
properties of each molecule is the type and
number of atoms involved as well as their
connectivity pattern and stereochemistry.
This is where things get complicated, be-
cause the connection possibilities between
atoms are almost endless. Quantitative es-
timates range from 10E24 possible organic
moleculeswith up to 30 atoms using known
functional groups[1] to 10E60 for all drug-
like molecules up to a molecular weight of

500 Daltons.[2] On the other hand, almost
200 years of synthetic organic chemistry
have produced more than 100 million dif-
ferent compounds, most of them in the last
30 years following the industrialization
of combinatorial and parallel synthesis
in support of drug discovery.[3] This rep-
resents a very large number of molecules
in absolute terms when considering the ex-
perimental resources needed for synthesis,
but still a very small number compared to
the possibilities mentioned above.

Takentogether,all thesemoleculesform
the so-called chemical space, part of which
is available in public databases ranging
from thousands to billions of compounds
(Table 1). Chemical space also describes
multi-dimensional conceptual spaces in
which dimensions represent properties of
molecules calculated from the molecular
structure and grouped in a feature vector,
or fingerprint (Table 2). In such chemical
spaces, each molecule is placed at the co-
ordinates corresponding to its properties,
and the distance between two molecules
measures their similarity. Chemical space
provides a powerful concept to address the
diversity of organic molecules and exploit
this diversity for various applications.

Here we discuss how to use chemical
space to assist drug discovery with recent
examples from our laboratory extend-
ing beyond our previous reviews.[4] First,
we address the question of understanding
chemical space as the ensemble of all mol-
ecules by performing an exhaustive enu-
meration to form the chemical universe
databases (GDB: generated databases),
which opens the way to unknown classes
of molecules that have not yet been con-

sidered for synthesis. We highlight the
need to consider relevant subsets of this
very large chemical space and to focus on
molecules that are structurally simple and
readily accessible by chemical synthesis,
such as fragrance-like and fragment-like
molecules. Second, we consider chemi-
cal space as a tool to visualize and search
large molecular databases. The idea is
quite simple: since the physicochemical
and biological properties of molecules are
determined by their molecular structures,
one can use the distribution of molecules
in chemical space to guide a search for a
particular property. Most often one starts
with a referencemolecule and scans a large
database to identify its nearest neighbors,
which are themolecules with themost sim-
ilar properties to the reference molecule.

These approaches represent a typical
big data problem where the limiting factor
is computational power, data storage and
data access capacity. Indeed, molecular da-
tabases are very large, therefore the compu-
tations necessary to organize molecules in
chemical spaces and to perform proximity
searches are quite resource intensive. The
computational tools and databases from
our group discussed here are available for
public use at www.gdb.unibe.ch.

The Chemical Universe Databases
GDB

We have undertaken a computational
enumeration to understand the number of
possible organic molecules and hence the
scope of organic chemistry. This problem
was addressed for the first time back in the
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11)[23] to 977 million molecules up to 13
atoms (GDB-13)[14] and finally to 166.4
billion molecules up to 17 atoms (GDB-
17).[16] Although these large databases
are difficult to handle, we also succeeded
in classifying them on the basis of the
MQN-system (Table 2) such that similar-
ity searches can be performed.[24]

sembled the chemical universe databases
GDB listing all possible molecules fol-
lowing defined rules for chemical stabil-
ity and synthetic feasibility. Thanks to
increasing computational resources and
smarter programming over the years, we
expanded our initial enumeration of 26.4
million molecules up to 11 atoms (GDB-

19th century with efforts to count the num-
ber of possible acyclic hydrocarbons.[22]
Our aim was not only to count but also
to generate the structures of all possible
molecules, including cyclic and functional
ones, which would be of interest for drug
discovery. By combining cheminformat-
ics tools with chemical insights, we as-

Table 1. Publicly available databases of small moleculesa.

Database Description Size web addresses

DrugBank[5] Collection of approved and experimental drugs 7895 https://www.drugbank.ca/

CTD[6] Toxicogenomics database 12 K http://ctdbase.org/about/dataStatus.go

NCI[7] National cancer institute chemical database 265 K https://cactus.nci.nih.gov/

BindingDB[8] Bioactive small molecules annotated with
experimental data 600 K https://www.bindingdb.org/bind/index.jsp

ChEMBL[9] Bioactive small molecules annotated with
experimental data 1.7 M https://www.ebi.ac.uk/chembldb

SureChEMBL[10] Collection of patented compounds 17 M https://www.surechembl.org/search/

eMolecules Commercial small molecules for screening 7 M https://www.emolecules.com/

ChemSpider Collection of compounds from various institu-
tions and commercial companies 58 M http://www.chemspider.com/

PubChem[11] NIH repository of molecules 93 M http://pubchem.ncbi.nlm.nih.gov

ZINC 15[12] Commercial small molecules for screening 378 M http://zinc15.docking.org/

GDB-11[13] Possible small molecules up to 11 atoms of C,
N, O, F 26 M http://gdb.unibe.ch

GDB-13[14] Possible small molecules up to 13 atoms of C,
N, O, S, Cl 980 M http://gdb.unibe.ch

GDB-13.FL[15] Fragrance-like subset of GDB-13 59 M http://gdb.unibe.ch

GDB-17[16] Possible small molecules up to 17 atoms of C,
N, O, S and halogens 166 B http://gdb.unibe.ch

FDB-17[17] Fragment like subset of GDB-17 10 M http://gdb.unibe.ch

aCompound numbers as of 24 June 2017

Table 2. Fingerprints used to generate chemical spaces.

Fingerprint Feature
perceived

Description

APfp[15] Shape Atom-pair fingerprint. 20-dimensional scalar fingerprint, each dimension counts the number
of atom pairs at one particular topological distance between 1 and 20 bonds, normalized by
HAC

SMIfp[18] Composition SMILES fingerprint. 34-dimensional scalar fingerprint, counts 34 characters appearing in the
SMILES notation of molecules

MQN[19] Composition Molecular Quantum Numbers. 42-dimensional scalar fingerprint, counts 42 Molecular Quan-
tum Numbers (MQN) counting atom types, bond types, polar groups and topologies

Xfp[15] Pharmacophore Atom category extended atom-pair fingerprint. 55-dimensional scalar fingerprint, category
extended version of APfp counting the number of category atom pairs at one particular topo-
logical distance between 0 and 10 bonds, normalized by the number of category atoms, for
categories: hydrophobic atoms, H-bond donor atoms, H-bond acceptor atoms, sp2 hybridized
atoms, and HBA/HBD cross-pairs

Sfp[20] Substructure Daylight type substructure fingerprint. 1024-dimensional binary fingerprint, perceives the
presence of substructures

ECfp4[21] Substructure Extended connectivity fingerprint. 1024-dimensional binary fingerprint, perceives the pres-
ence of extended connectivity elements up to 4 bonds around each atom
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two recently published cases related to col-
laboration with the NCCR TransCure and
the NCCR Chemical Biology, we focused
on approximately 900,000 compounds
from two vendors (Princeton Pvt. Ltd.
And Otava Ltd.), and started with known
reference compounds for the targets of in-
terest. For similarity searching we used an
in-house developed virtual screening algo-
rithm called xLOS, which compares the
3D-shapeandpharmacophoreofmolecules.
This comparison involves generating the
3D-structures of molecules and optimizing
the spatial overlap between the reference
and each database compound by an itera-
tive sampling and scoring procedure. This
3D similarity search, which conceptually
corresponds to a nearest neighbor search in
a non-Euclidean high-dimensional chemi-
cal space, is much more demanding than
fingerprint-based comparisons, but is still
manageable for even millions of molecules
with an optimized workflow.

In the first instance, we addressed the
question of discovering a submicromolar
and selective inhibitor of TRPV6, a cal-
cium channel overexpressed in various
cancers, to clarify whether pharmacologi-
cal blocking of this channel might offer an
option to control cell growth as suggested
by si-RNA experiments.[30] Starting with
the known but very weak and non-selec-
tive TRPV6 inhibitor 7, we performed two
successive rounds of LBVS and identified
a new lead series based on a cyclohexyl-
piperazine based scaffold, which we op-
timized by classical medicinal chemistry.
Our best compound 8 showed high selec-
tivity for TRPV6 among other calcium
channels (Fig. 1d). Comparison with its
less active trans-stereoisomer showed that
8 selectively but only marginally reduced
cell growth in TRPV6 overexpressing can-
cer cells.

In the second instance, we used the
same approach as above to identify a new
and selective inhibitor of the anti-cancer
targetAuroraA kinase starting from known
kinase inhibitors.[31] We hoped to exploit
the fact that 3D-shape and pharmacophore
similarity searching ignores the structural
details of the molecules and therefore al-
lows to identify ‘scaffold-hopping’ ana-
logs.[32] Our LBVS workflow allowed us
to identify a thiazolidinone hit compound
with submicromolar inhibition of Aurora
A. We then solved the crystal structure of
its complex with Aurora A to identify its
binding mode, and designed the optimized
analog 9 with a single digit nanomolar po-
tency against Aurora A (Fig. 1e). Our in-
hibitor 9 was highly selective for Aurora
kinases among over 400 other human ki-
nases, and induced a selective Aurora A
inhibition phenotype in cells. Interestingly
9 was flagged as being a so-called PAINS
(pan-assay interference)[33] compound due

returns for example the yet unknown phar-
macophore analogs 3–6 (Fig. 1b). The fra-
grance database GDB-13.FL and the frag-
ment database FDB-17 are freely available
for download and interactively searchable
on our website.

Ligand-based Virtual Screening
(LBVS) by Nearest Neighbor
Searches

Virtual screening (VS) consists in ap-
plying computational models to large data-
bases of molecules to select a limited
number of compounds, typically tens to
hundreds of molecules, on which to focus
experimental evaluation.[27] VS saves time
and resources compared to classical high-
throughput screening (HTS) and can there-
fore be applied in projects for which large
support cannot be committed, such as to
assist the identification of tool compounds
for targets that are not yet validated. VS
can also address a much larger number
and broader range of molecules than HTS,
including virtual molecules that have not
beensynthesizedyet, suchas theGDBdata-
bases and their subsets.

In ligand-based virtual screening
(LBVS) one performs similarity search-
ing to identify analogs of one or several
known reference compounds, typically be-
cause these reference compounds already
possess the desired activity, as exemplified
above for GDB-13.FL and FDB-17 (Fig.
1b).[28] LBVS is particularly well-suited
for large compound databases when using
the concept of nearest neighbors in a multi-
dimensional chemical space. We have pro-
duced web-based searchable versions of
our GDB databases and of several public
databases in Table 1 by placing these da-
tabases in the chemical spaces defined by
the fingerprints listed in Table 2. These
web tools allow one to input a reference
molecule and retrieve its nearest neighbors
by similarity according to a selected fin-
gerprint. We have programmed a particu-
larly advanced tool for the ZINC database,
which lists commercially available screen-
ing compounds from various providers.[29]
In this so-called multi-fingerprint browser
for the ZINC database search results can
be clustered to produce small subsets of
test compounds, as illustrated here for pur-
chasable adrenaline analogs identified by
ECfp4 similarity (Fig. 1c).

Virtual Screening with ZINC

While our main research interest is to
use GDB for drug discovery, we have re-
cently performed LBVS projects exploit-
ing the ZINC database because compounds
from ZINC can be purchased directly. In

The combinatorial enumeration proce-
dure used to assemble the GDB databases
produces the largest number of possible
molecules for the biggest, most function-
alized, structurally and stereochemically
most complex molecular structures. By
contrast, during experimental syntheses
of GDB molecules we generally selected
the smaller and simpler molecules to en-
sure rapid synthetic success.[25] Rather
than to enumerate even more molecules,
we have therefore recently taken steps to
select GDB-subsets to propose smaller
collections of molecules enriched with the
simplest and synthetically most accessible
compounds.

In our first implementation of this idea
we addressed fragrances, which are typi-
cally small volatile molecules containing
one or two functional groups with oxygen
only. We defined a set of ‘fragrance-like-
ness’ criteria to constrain molecules within
that property range and filtered the 977mil-
lion structures in GDB-13, which yielded
a fragrance-like subset of only 59 million
compounds, called GDB-13.FL.[15] In a
second and most recent application of this
idea we have defined a subset of fragment-
like molecules from our largest database
GDB-17. The very large database GDB-
17 had been assembled using our typi-
cal enumeration procedure starting from
mathematical graphs, whereby we first se-
lect graphs corresponding to relatively un-
strained hydrocarbons, followed by intro-
duction of unsaturation considering again
ring strain criteria such as the avoidance
of bridgehead double bonds, and finally
substitute heteroatoms for carbons taking
functional group and chemical stability
criteria into account. Our fragment-like
subset, called FDB-17, was then obtained
by applying complexity reduction and
fragment-likeness[26] criteria to GDB-17,
resulting in a subset of 4.6 billion mol-
ecules. This subset was further reduced
to only 10 million structures by sampling
molecules evenly across molecular size,
polarity and stereochemical complexity
to enrich the smaller, less functionalized
and stereochemically simplest structures
representing the more realistic synthetic
targets in GDB-17 (Fig. 1a).[17]

Starting with a known molecule of in-
terest, one can readily search these subsets
by nearest neighbor searches in various
chemical spaces and identify interesting,
possibly yet unknown and synthetically
tractable analogs predicted to have very
similar properties. We exemplify this idea
for the MQN-nearest neighbors of men-
thone (1) in GDB-13.FL which comprise
many related cyclic aliphatic ketones, and
for a similarity search for new analogs
of gabapentin (2) in FDB-17 involving
MQN-nearest neighbors combined with
3D-shape similarity comparisons, which
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targets based on similarities computed
from compounds with over 4000 different
possible targets, using 10 different types of
fingerprints.[35]

Although the computation requires a
10-fold similarity search with almost one
million compounds,we developed highly ef-
ficient code, such that the search with PPB is
complete in less than one minute. In general
PPB delivers a broader set of results than
other comparable web tools. As an applica-
tion example, we have used PPB to predict
the off-targets of the TRPV6 inhibitor 8 dis-

similarity searches in databases containing
information on the activity of small mol-
ecule drugs and their protein targets one
can predict the possible off-targets of a hit
compound or drug candidate. The chal-
lenge here is to perform a similarity search
in an annotated database using a similarity
method which is fast yet identifies relevant
compounds in terms of their shared biolog-
ical activity. We have constructed such a
target prediction tool, called the polyphar-
macology browser (PPB), which uses data
from the ChEMBL database, and predicts

to the presence of the potentially electro-
philic exocyclic double bond, however
we did not detect any significant reactiv-
ity with glutathione or any hint of a non-
selective activity.

Target Prediction with the
Polypharmacology Browser (PPB)

Most if not all drugs interact with
multiple targets, a phenomenon known
as polypharmacology.[34] By performing

a)

xLOS +
optimization by

SAR
7

IC50 = 90 �M
TRPV6

8
IC50 = 0.32 ± 0.12 �M

TRPV6

20 known
kinase inhibitors

9
IC50 = 2 nM
Aurora A

xLOS +
Optimization by
structure-based

design

2 (gabapentin)

3 4

5 6

a) b)

c)

d)

LBVS in FDB-17

1 (menthone)

LBVS in GDB-13.FL

e)

GDB-17: Molecules
166 B

Hydrocarbons
5.4 M

2) Add unsaturations

Graphs  17 nodes
114 B

1) Limit ring strain

Skeletons
1.3 B

3) Insert heteroatoms

4.6 G Subset: Fragments
4.6 B

4) Limit complexity

5) Sample evenly for
size/heteroatoms/
stereocenters

FDB-17
10 M

Fig. 1. a) Computation of the GDB-17 database from graphs and selection of the fragment-like subset FDB-17. b) Example of similarity searches in
GDB-13.FL and in FDB-17. c) Identification of nearest neighbors of adrenaline in ZINC by substructure similarity using the multi-fingerprint browser
for ZINC. The ECfp4 nearest neighbors are shown in the primary output window. They can be further clustered by K-means clustering using different
fingerprints. d,e) Discovery of TRPV6 and Aurora A kinase inhibitors by LBVS using the 3D-shape and pharmacophore similarity algorithm xLOS
followed by lead optimization by structure-activity relationship (SAR) or by structure-based design.
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cussed above. Actual measurement proved
that the compound also binds to adrenergic,
dopamine, and 5-hydroxy-tryptamine re-
ceptors, as predicted by PPB (Fig. 2).

Visualizing Chemical Space

Methods for visualizing chemical spac-
es address the problem of interfacing our
own human brain with large compound
databases to provide intuitive insights and
informed user-defined choices, which are
unavoidable and often critical within drug
discoveryprojects.[36] In our approach tovi-
sualize multi-dimensional chemical spaces
we use dimensionality reduction to obtain
2D or 3D maps.[37]We then bin these maps
into 2D- or 3D-pixels (voxels) at a chosen
resolution, and color-code each pixel ac-
cording to various properties computed
for the molecules in the associated bin.
The resulting image is finally converted to
an interactive format for on-screen display
such that the 2D-structures of the mole-
cules in each pixel are shown on-screen on
mouse-over.[38] We have produced several
interactive color-coded 2D-maps in the
form of downloadable Java-applets called
‘mapplets’ for our GDB and various other
databases. These maps represent chemi-
cal spaces generated from the fingerprints
in Table 2 and were obtained by principal
component analysis (PCA) or similarity
mapping as a dimensionality reduction
method.[15,17,18,38,39]

Most recently we turned our atten-
tion to producing a web-based version of
these Java applets that can be used within
a web-browser from any platform includ-
ing not only computers but also tablets and
cell phones. In this case we implemented
3D-chemical space maps because they

produce a much better distribution of com-
pounds in voxels and allow to render more
complex chemical spaces. Our first imple-
mentation, called WebDrugCS, renders all
molecules in DrugBank in 3D-spaces ob-
tained by PCA of the chemicals spaces in
Table 2 (Fig. 3a).[40] In a second implemen-
tation of this approach, we have produced
a related online tool called WebMolCS to
render 3D-chemical spaces produced by
either PCA or similarity mapping for up
to 5000 molecules defined by the user.[41]
This tool is particularly useful to visualize
the structural diversity in nearest neighbor
selections from our GDBs, as illustrated
for the case of 5000 MQN-nearest neigh-
bors of nicotine selected from GDB-13
(Fig. 3b).[42]

Conclusion and Outlook

Chemical space provides an organizing
concept to understand, exploit and visualize
very large databases ofmolecules in support
for drug discovery projects. The approach is
particularly useful because databases in ex-
cess of hundreds of millions of molecules
are becoming more and more common, in-
cluding not only our GDB databases, but
also the expanded ZINC database now list-
ing over 300 million compounds that can
be synthesized on demand.[12] Even much
larger compound databases might require
a chemical space based analysis in the fu-
ture, such as compounds in DNA-encoded
libraries reaching potentially trillions of
molecules or more.[43] Understanding the

Confirmed
Targets

Predicted
Targets

H(RG
ADRA1A
DRD1
DRD2
DRD3
DRD4
CHRM1
CHRM2
OPRM
HTR1A
HTR2A
SC12A

a) b)

Fig. 2. Off-target predictions by the polypharmacology browser PPB. a) Prediction of off-targets for the TRPV6 inhibitor 8. b) Experimentally con-
firmed targets of 8. Green color: targets predicted by PPB. Target full names: Adrenergic α1A (ADRA1A), Cholinergic muscarinic receptor 1 (CHRM1)
and 2 (CHRM2), Dopamine receptor subtypes D1-4 (DRD1-4), 5-hydroytryptamine receptor 1A (HTR1A) and 2A (HTR2A), Voltage gated potassium
channel subfamily H member 2 (HERG), µ opioid receptor (OPRM) and voltage gated Na+ channel (SCN2A).

b)a)a)a)

Fig. 3. Visualizing chemical space. a) WebDrugCS: visualization of DrugBank (see Table 1) in the
chemical space of the APfp fingerprint (see Table 2) projected in 3D by PCA. The map is color-
coded by increasing rotatable bond count (RBC) per molecule, which represents structural rigid-
ity, from blue (RBC = 0) to magenta (max. value). Example drugs are shown with arrows pointing
to the corresponding voxel: amandatine (upper left), diazepam (upper right), celecoxib (lower
left) and simvastatin (lower right). b) WebMolCS: visualization of 5000 MQN-nearest neighbor of
nicotine from GDB-13 in the chemical space of the Xfp fingerprint (see Table 2) projected in 3D by
similarity mapping. The map is color-coded by Xfp-similarity to nicotine from blue (lowest similar-
ity) to red (highest similarity).
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structural diversity of such large compound
collections represents a significant techni-
cal challenge in terms of data handling, but
also an enormous opportunity to improve
our understanding of chemical space and
enable the discovery of new drugs.
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