
648 CHIMIA 2018, 72, No. 9 Columns

doi:10.2533/chimia.2018.648 Chimia 72 (2018) 648–649 © Swiss Chemical Society

Medicinal Chemistry and Chemical Biology Highlights

Division of Medicinal Chemistry and Chemical Biology
A Division of the Swiss Chemical Society

Practical Aspects of Machine Learning for
the Design-Synthesis-Purify-Assay Workflow

Finton Sirockin* and Nikolaus Stiefl*

*Correspondence: Dr. F. Sirockin, Dr. N. Stiefl, Novartis Institutes for Biomedical
Research, Fabrikstrasse 2, Novartis Campus, CH-4056 Basel, E-mail: finton.si-
rockin@novartis.com; nikolaus.stiefl@novartis.com

Keywords: Automated synthesis · Auto-updating learning sys-
tems · Machine learning

As already discussed in this column,[1]Machine Learning, via
its Deep Learning incarnation which came back into the limelight
in the past few years,[2,3] or the more classical approaches, such
as Multiple Linear Regression[4] (MLR), Random Forest[5] (RF),
K-Nearest Neighbour[6] (KNN), etc., is invading drug design
and synthesis. Apart from learning how to make molecules[1] or
optimizing reaction conditions,[7] what molecules to make is key
in all medicinal chemistry projects. For this, both classification
and regression methods have been successfully applied to predict
activity (QSAR) and properties (QSPR), cf. references in refs
[8,9].

Model performance, however, is greatly affected by the
quantity and quality of available data. The typical situations
encountered in real-life Medicinal Chemistry projects are (1)
one or two active compounds are known as starting points, often
from patents or literature, with no other information; (2) one or
two mildly active starting points and a handful of inactives; (3) a
few mildly active compounds and many inactives, a typical MTS
or HTS situation; (4) a reasonably sized dataset with well spread
activity data, a situation usually occurring in later stages of the
drug design cycle. The two first cases make designing predictive
models nearly impossible. The third case is more tractable, but
one should probably start creating amodel for inactive-compound
prediction in that situation.

With recent progress in automated synthesis[10] and
integrated Design – Synthesis – Purification – Assay(s) (DSPA)
platforms,[11,12] auto-updating learning systems are key. For such
systems to be efficient, they must combine good predictive power
and fast model updating on multiple endpoints, with the capacity
to automatically generate realistic and chemically tractable (in
the context of an automated platform) virtual molecules to be
assessed and selected by the models.

While deriving single endpoint predictions (e.g. activity
against target, cellular activity, permeability, solubility, etc.) is
often tractable,[13–16] the simultaneous optimization of multiple
parameters,[17] frequently contradictory with each other, is a
combination of various tough problems, among others: (1)
uncertainty in and partial availability of experimental data;
(2) different endpoints are driven by different chemical and
physicochemical properties; (3) varying endpoint importance
on the overall profile. Even though the Zeitgeist suggests
that Artificial Intelligence (AI) can predict any task without
understanding the underlying physical concepts, this is simply
wrong in this case. As there is no golden bullet the theoretical
medicinal chemist has to use the full armory of cheminformatics
and statistical methods to address them.

The question of the applicability domain of a single model is
key and warrants careful consideration of datasets and statistical
methods.[18,19] If not enough data is available directly, surrogate
methods can be used to fill data gaps (e.g. pQSAR[20]). If available
data diversity is low – often driven by exclusive selection of
compounds predicted to be themost active[21] – the data scientist’s
responsibility is to promote careful selection of the most
informative compounds in order to support the model predictive
power. This would remediate the problem of inconclusive model
predictions, however generating and capturing negative data is
too often seen as a luxury, which is a mistake.

The selection of descriptors relevant for the observable to
be modelled is not trivial. Classical ADMET observables are
often well modelled using physicochemical properties, while
target activity, or other events involving molecular recognition,
necessitates a combination of specific chemical features along
with defined bulk properties, thus leading to models involving
fragment-based descriptors, molecular fingerprints along with
physicochemical descriptors.[22] However, if not done carefully,
adding too many descriptors can lead to overtrained models[23] or
the infamous spurious correlations.[24]

A more subjective task is the adaption of weights between
the different endpoints in the course of an iterative optimization
process. While in a regular Medicinal Chemistry project, the
parameters are often optimized sequentially, a key advantage of
auto-updating learning systems is the necessity to consider and
implement those differing weights from the beginning. Here, the
major responsibility of the data scientist is to remind the team
to review and adapt the endpoints’ varying importance during
the course of the optimization. This in turn will cultivate a data
science culture that will be necessary for the medicinal chemistry
of the future.

Fig. 1. Design-Synthesis-Purification-Assay iterative cycle.
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Withmodels in hand,molecules need to be virtually generated
to be assessed by the model(s) and selected for synthesis. In the
context of DSPA platforms, synthesis routes commonly involve
few steps of common reactions limited by cost and building
blocks availability.[25] In contrast to ref. [1], here the focus is
on automatic compound generation under the aforementioned
constraints. This leads to two avenues: either the building blocks
are available internally or commercially or the final compounds
can be synthesized from advanced intermediates.

For the former, recently, multiple vendors started to provide
large sets of building blocks along with reactivity information
(e.g. REAL Database provided by Enamine[26]). It has the
advantage that the probability of success for synthesis in an
automated synthesis platform context is reasonable. Beyond
vendor offerings, companies leverage on their internal reactivity
data pool.[27] This type of information can also be used for de
novo design approaches[28] that fit the real-life scenario of focused
library synthesis.

From the synthesis point of view, the latter avenue is more
demanding and probably more prone to failure. Conversely, it
allows the inclusion of project specific knowledge into the design
process along with a higher potential for novelty. Even though
virtual molecules can be generated with methods that do not rely
on existing sets of building blocks such as GeneticAlgorithms[29]
(GA), Recurrent Neural Network (RNN) Deep Learning
methods such as Long Short-Term Memory[30] (LSTM), Gated
Recurrent Unit[31] (GRU), Stack-RNN,[32]GenerativeAdversarial
Networks[33] (GAN) and combinations thereof,[34] none of these
are specifically optimized to work with constraints of advanced
intermediates, chemical reactivity and limited number of
chemical steps.

For either method, in order not to generate molecules outside
the applicability domain of the ML models it is necessary to
either filter the generated molecules or focus the generative
process itself towards the relevant portion of chemical space.
Filtering can be done for both 2D[35] or 3D[36,37] approaches in a
straightforward manner, typically using distances to the training
set. However, one drawback of 3Dmethods is that they can be too
computationally demanding. To focus the molecular generation
itself, a generic model built on millions of drug-like molecules
(e.g.ChEMBL[38]) is typically re-trained with molecules from the
training set using so-called reinforcement techniques.[39]

Overall, even though the recent strong interest around AI
would suggest that the new methods will solve all our problems,
it is important to note that only by fully understanding the gist of
thematter can one take full advantage of the potential of platforms
such as DSPA. It will require substantial efforts from individuals
to understand the science and techniques behind these methods,
especially their scope and limitations. This, in combination with
a radical change in company and laboratory culture, will provide
the potential to fully leverage a brave new world of data science
driven drug discovery and automation platforms.
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