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Abstract: Vinylidene ortho-quinone methides (VQMs) are one-carbon elongated homologues of ortho-quinone
methides (QMs), well-known as useful reaction intermediates in organic transformations. These related quinone
methides are quite distinct in terms of stereochemistry. Namely, VQMs are characterized by an exocyclic al-
lenyl ketone unit merged with a dearomatized ring system and thus, can be rendered axially chiral by locating
a substituent properly at the terminal methylene group of the allene moiety. It should be also noted that VQMs
are tautomers of ortho-ethynylphenols and these isomeric species are correlated through a proton-shift (tau-
tomerization). Focusing on these stereochemical and structural features, we have pursued the development of
unprecedented asymmetric reactions involving enantioenriched VQM intermediates generated by chiral-base-
catalyzed tautomerization of the ethynylphenol precursors. Indeed, commonly used chiral base catalysts such
as cinchonine (CN) and cinchonidine (CD) have been successfully demonstrated to be effective to this end.
In this account, we wish to briefly describe our recent studies on the asymmetric syntheses of optically ac-
tive indeno[1,2-c]chromenes, benzofuro[3,2-b]indeno[1,2-c]chromenes, and benzo[a]carbazoles, based on the
catalytic enantioselective generation of VQMs with CN or CD and the stereocontrolled intramolecular follow-up
cyclization with tethered alkynes, benzofurans, and indoles, respectively.
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1. Introduction

ortho-Quinone methides (QMs) have
long been known as versatile reaction in-
termediates and involved in many organic
transformations, including those for chem-
ical synthesis, biosynthesis, and chemical
biology.[1] This is a result not only of the
convenient generation of QMs through
dearomatization of the corresponding phe-
nol derivatives, but also their high reactiv-
ity (Scheme 1). Namely, QMs comprise a
carbonyl and methylene group attached to

a dearomatized ring system and accord-
ingly serve as excellent Michael acceptors
that readily undergo conjugate addition
reactions with a variety of nucleophiles,
owing to the driving force for rearomatiza-
tion (path a in Scheme 1). Furthermore,
the exocyclic enone substructure fixed to
an s-cis conformation permitsQMs to play
the role of an electrophilic heterodiene in
inverse-electron-demand [4+2] cycloaddi-
tionswith electron-rich dienophiles, restor-
ing the aromatic ring (path b in Scheme 1).

In contrast to the well-investigated
QMs,[1] their one-carbon elongated ho-
mologues, vinylidene ortho-quinone me-
thides (VQMs), have been far less studied
(Scheme 2). VQMs are characterized by
an exocyclic allenyl ketone unit and quite
distinct fromQMs in terms of stereochem-
istry. UnlikeQMs,VQMs can be rendered
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Scheme 1. ortho-Quinone methides (QMs): Outline of preparation and reactivity.
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axially chiral by locating a substituent
properly at the terminal methylene group
of the allene moiety. Furthermore, VQMs
are tautomers of ortho-ethynylphenols
(Scheme 3). Focusing on these stereo-
chemical and structural features, we envi-
sioned the development of unprecedented
asymmetric reactions involving enantio-
enriched VQM intermediates generated
by enantioselective tautomerization of the
ethynylphenol precursors with a chiral
catalyst and the stereocontrolled follow-
up reactions.

At the outset of the study, there were
only a few reports on the manipulation of
VQMs for non-asymmetric synthesis.[2]
Youngs and co-workers first proposed the
involvement of a VQM intermediate (I) in
the tandem one-pot bicyclization of A and
B toC (Scheme 4a):[2a] the primary product
from the double Sonogashira coupling of
A and B underwent a rapid proton-shift[3]
to provide VQM (I) followed by intra-
molecular inverse-electron-demand [4+2]
cycloaddition with the adjacent alkyne,
leading to C. A photochemical method
for generating VQMs was also disclosed
by Freccero and co-workers.[2b] They in-
duced an excited-state intramolecular
proton-transfer (ESIPT) process in simple
ortho-ethynylphenols by UV-irradiation to
obtain the corresponding VQMs,[4] which
were reactive to external nucleophiles.
For example, VQM (II), converted from
D by ESIPT, underwent intermolecular
conjugate addition by nPrNH

2
to primar-

ily afford the enamine, which was finally
transformed to imine E through tautomer-
ization (Scheme 4b). On the other hand, a
different approach based on a thermal acyl
transfer to generating aVQMwas reported
byVedejs and co-workers.[2c]They implied
that the O-acetyl group in starting material
F was transferred to the alkyne moiety at
high temperature,[5] leading to the forma-
tion of VQM (III), which further under-
went formal [4+1] cycloaddition to pro-
duce phospha-heterocycle G (Scheme 4c).

Among these precedented methods to
generate VQMs,[6] the most interesting was
in the proton-shift with a base catalyst that
was implicated in Youngs’ report.[2a] The
potential base catalysis was more clearly
shown in the course of our separate study
on the Pd-catalyzed tandem cyclodehy-
drogenation[7] of ortho-phenylene-linked
bis(naphthol) H to oxa-heterohelicene I
(Scheme 5, path a). In this system, a side
reaction to afford indeno[1,2-c]chromene J,
which was reasonably ascribed to the sim-
ple base-catalyzed generation of a VQM
intermediate IV from H, was also noted
(Scheme 5, path b).[7b] This preliminary
result encouraged us to launch the system-
atic research on the chiral-base-catalyzed
enantioselective proton-shift of the ethy-
nylnaphthol to manipulate the enantioen-
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C-deuterated VQM-d, which would un-
dergo intramolecular [4+2] cycloaddition
with the tethered alkyne to provide 2a-d.

We further attempted to render the re-
action catalytic and identified Et

3
N to be an

effective catalyst: treatment of 1a with 10
mol % of Et

3
N in CHCl

3
at room tempera-

ture for 24 h provided 2a in 96% (Scheme
8). It should be also noted that 2a is axially
chiral and stereochemically stable enough
not to suffer from racemization at room
temperature. Thus, we surveyed various
chiral amines for the catalytic asymmetric
cyclization of 1a and found that the com-
mon cinchona alkaloids, including cincho-
nine (CN), cinchonidine (CD), quinidine
(QD), and quinine (QN), displayed mod-
erate levels of enantioselectivity (Scheme
8). For example,CNwas used as the chiral
base catalyst (10 mol %) to obtain (–)-2a
in 60% ee and 90% yield.[10] This should
indicate thatCN converts 1a to an enantio-
enriched VQM followed by the stereocon-
trolled cyclization, leading to the forma-
tion of 2a with the axial chirality defined
by that of the VQM. Notably, the O-acetyl
derivative of CN (CN-OAc) showed much
lower catalytic activity and enantioselec-
tivity (40% yield, 32% ee), implying that
besides the tertiary amino group, the sec-
ondary hydroxy group of CN may play a
pivotal role in the enantioselective VQM-
generating step.[7c]

ment. When the reaction was carried out
in the presence of D

2
O, the deuterated

product, 2a-d with 50 atom % D, was ob-
tained (Scheme 7). This can be ascribed
to the preformation of the O-deuterated
1a-d upon H–D exchange of 1a, followed
by the deuterium shift to generate the

riched VQM intermediate thus generated
for the following stereocontrolled intra-
molecular cyclizations. Indeed, commonly
used chiral base catalysts such as cincho-
nine (CN) and cinchonidine (CD) have
been demonstrated to be effective to this
end.[8] In this account, we wish to briefly

describe our recent studies on the asym-
metric syntheses of optically active indeno
[1,2-c]chromenes,[7c,9a] benzofuro[3,2-b]
indeno[1,2-c]chromenes,[7c,9b] and benzo[a]
carbazoles[9c] based on the catalytic enan-
tioselective generation of VQMs with CN
or CD and the stereocontrolled intramo-
lecular follow-up cyclization with tethered
alkynes, benzofurans, and indoles, respec-
tively (Fig. 1).

2. Asymmetric Synthesis of
Indeno[1,2-c]chromenes with Axial
Chirality[9a]

Following theunexpectedresults shown
in Scheme 5, we examined various bases to
effect the selective VQM-mediated cycli-
zation. Consequently, the treatment of 1a
(≡ H in Scheme 5) with K

2
CO

3
in AcOEt

very effectively provided indeno[1,2-c]
chromene 2a (≡ J in Scheme 5) as the sole
product in 97% yield (Scheme 6). Related
unsymmetrical substrates 1b–e bearing
ethynylnaphthol and ethynylphenol units
were also transformed into the correspond-
ing products 2b–e, respectively, all in ex-
cellent yields (97–99%).

The involvement of a VQM interme-
diate in the cyclization of 1a to 2a was
supported by a deuterium-labeling experi-
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Indeed, we treated ortho-phenylene-
linked ethynylnaphthol-benzofurans 3a,
3b, 3c, and 3d with CD (10 mol %) in
CHCl

3
at 50 °C and obtained the enantio-

enriched benzofuro[3,2-b]indeno[1,2-c]
chromene derivatives,[14] (−)-4a (78% ee),
(−)-4b (74% ee), (−)-4c (71% ee), and (−)-
4d (52% ee), respectively, as single diaste-
reomers in good to high yields (Scheme
11).[15] The absolute configuration of
(−)-4d was unambiguously determined
to be (S,S) by X-ray crystallography and
the same stereochemical assignment has
been tentatively applied to the other levo-
rotatory products. Furthermore, CN also
served as an effective catalyst, converting
3a and 3b to the opposite enantiomers,
(+)-4a (75% ee) and (+)-4b (70% ee), re-
spectively.

The involvement of a VQM interme-
diate was supported by DFT calculations
on the reaction pathway from simple sub-
strate 3e with a basic benzofuran ring to
4e (Fig. 2). Furthermore, the follow-up
intramolecular [4+2] cycloaddition was
calculated to proceed through a con-
certed but asynchronous transition state,
in which C(2) (benzofuran)–C

sp
(VQM)

bond formation precedes C(3)–O bond
formation (C(2)–C

sp
1.97 Å vs. C(3)–O

2.72 Å). On the basis of the experimental
and theoretical outcomes (Scheme 10 and
Fig. 2), a chirality-relay mechanism for
the stereochemical course of the enanti-
oselective cyclization from 3 to 4 is pos-
tulated (Scheme 12): (i) the enantioselec-
tive proton-shift of 3 to generate the en-
antioenriched VQM intermediate with an
a
1
S configuration at the allene moiety by

using CD and with an a
1
R configuration

by using CN, respectively; (ii) the axial
chirality of a

1
defines that of a

2
at the ben-

zofuran moiety to set up the (a
1
S,a

2
S)- or

(a
1
R,a

2
R)-VQM, which leads to the prop-

er transition state for the [4+2] cycloaddi-
tion (see Fig. 2); and (iii) the VQM adds
across the furan C(2)–C(3) double bond
in a stereospecific syn fashion to deter-
mine the absolute configurations at the
two consecutive asymmetric carbon at-
oms of the final product, producing (S,S)-
5 from (a

1
S,a

2
S)-VQM and (R,R)-5 from

(a
1
R,a

2
R)-VQM.

4. Asymmetric Synthesis of Axially
Chiral Benzo[a]carbazoles[9c]

It should be noted that although the
treatment of 3 with a base catalyst mostly
produces 4, it occasionally yields minor
byproduct 5 through C(3)–C

sp
(VQM)

bond formation (Scheme 13, X = O).[9b]
This alternative reaction is formally the
electrophilic aromatic substitution of the
benzofuran. Despite its limited availabil-
ity, 5 was fascinating due to its unique

for this drawback. QM is one of such di-
enes, and benefits reactions with electron-
rich arenes due to its electrophilic nature.[1]
Thus, it was conceived that tethering a
VQM to a nucleophilic aryl group would
allow the stereocontrolled intramolecular
inverse-electron-demand [4+2] cycloaddi-
tion to assemble elaborate chiral polycy-
clic structures otherwise difficult to access
(Scheme 9b).[12]On the basis of this work-
ing hypothesis, linked ethynylnaphthol-
benzofuran systems were designed for the
chiral-base-catalyzed generation of VQMs
and the follow-up dearomatizative cycload-
ditions to provide enantioenriched dense-
ly-fused oxa-polyheterocyclic compounds
with consecutive quaternary and tertiary
asymmetric carbon atoms (Scheme 10).[13]

3. Asymmetric Synthesis of
Benzofuro[3,2-b]indeno[1,2-c]
chromenes[9b]

Catalytic enantioselective dearomati-
zative [4+2] cycloaddition is synthetically
highly attractive as a route to the con-
struction of diverse, chiral cyclic struc-
tures with a fused six-membered ring,
increasing molecular complexity.[11] We
are particularly interested in variations of
aromatic double bonds (2π synthons) and
dienes (4π synthons), which have been
less explored and remain formidable chal-
lenges (Scheme 9a).

Dearomatization is usually an energeti-
cally disfavored process, and the dienes
should be reactive enough to compensate
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stereochemical feature, axial chirality.
Thus, we addressed the development of
a new VQM system to permit the cata-
lytic asymmetric synthesis of axially chi-
ral compounds related to 5. Benzofuran

generally reacts with an electrophile at
the C(2) position rather than the C(3)
position, as described above,[16] which
explains why VQMs derived from 3 ba-
sically prefer the formation of 4 over 5.

In contrast, the isoelectronic 1H-indole
is in general more reactive at the C(3)
position.[15] 1H-Indole is also distinct
from benzofuran in that it displays lower
reactivity in dearomatization reactions,
owing to its larger aromatic stabilization
energy.[17]We accordingly conceived that
a chiral VQM intermediate from 6, the
indole counterpart of 3, should result in
electrophilic aromatic substitution at the
C(3) position, that is, hydroarylation of
alkynes with indoles, to afford the axially
chiral benzo[a]carbazoles 7 (Scheme 13,
X = NR).[18–21]

The working hypothesis on the regi-
oselectivity was proven by using an achi-
ral base. The treatment of benzofuran 3a
with 10 mol % of NEt

3
afforded 4a in 68%

yield along with 5a in 23% yield (Scheme
14, X = O). In sharp contrast, the reaction
of 1H-indole 6a (X = NH) under similar
conditions produced 8a in 93% yield with-
out any trace of 7a (Scheme 14, X = NH).
It is also remarkable that 8a is stereochem-
ically stable enough for optical resolution
by chiral HPLC at room temperature. Its
energy barrier to racemization was de-
termined to be 38.8 kcal/mol by kinetic
analysis.

Next the enantioselective transforma-
tion of 6a by using CD as a chiral base
catalyst in CH

2
Cl

2
was attempted (Table 1).

Disappointingly, (–)-8a was obtained with
low enantioselectivity (20% ee), although
the reaction proceeded under very mild
conditions in high yield (95%) (entry 1). In
contrast, it was found that enantioselectivi-
ty was dramatically enhanced forN-methyl
indole 6b, which gave (–)-8b in 95% ee
and 93% yield (entry 2). The high enantio-
selectivity and chemical yield (94% ee,
97%) were also attained with only 1 mol
% of catalyst, despite requiring a longer re-
action time (entry 3). Furthermore, a gram-
scale synthesis of (–)-8b was successfully
demonstratedwithout decay of the enantio-
selectivity and chemical yield (entry 4).
CN was also an effective catalyst, convert-
ing 6b to enantiomeric product (+)-8b in
90% ee and 94% yield (entry 5). The treat-
ment of related indoles 6c–g having differ-
ent N-substituents with CD also produced
the highly enantioenriched products 8c–g,
respectively (90–95% ee, 94–97% yields,
entries 6–10). In addition, N-methyl de-
rivatives 6h–kwith various substituents on
the indole ring underwent hydroarylation
to provide 8h–k in very high enantioselec-
tivities (94–96% ee) and chemical yields
(95–96%) (entries 11–14).

On the other hand, whereas 6l (R2, R4

= Me) was converted to highly enantioen-
riched 8l (82% yield, 96% ee), significant
formation of by-product 7l (14% yield,
64% ee) was also observed (entry 15, Fig.
3). Similarly, 6m (R2 = OMe) furnished a
mixture of 8m (48 yield, 96% ee) and 7m
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migration, should proceed in a stereospe-
cific fashion to produce enantioenriched 8,
the axial chirality of which is defined by
that of the VQM.

Notably, the present catalytic asymmet-
ric hydroarylation can be performed under
previously unknown transition-metal-free
conditions.[19] Since benzo[a]carbazole is a
conspicuous π-conjugated framework that
exhibits remarkable physical characteris-
tics,[22] this study provides a platform for the
development of organic molecules with chi-
roptical properties, and suggests a significant
impact in the field of materials science.[23]

5. Conclusion

This report introduces a unique method
for catalytic asymmetric synthesis based
on the enantioselective generation of axi-
ally chiral VQM intermediates and the
stereocontrolled follow-up cyclization.[7c,9]
Although VQMs had not been employed
for asymmetric catalysis at the outset of our
study,[2] they are currently being applied
in various asymmetric transformations,
including intramolecular [4+2] cycloaddi-
tions.[9a–c,10,15] alkyne hydroarylations,[9d]
and intermolecular Michael additions,[24]
which will rapidly expand their synthetic
utility. Further investigations are in prog-
ress in our laboratory to discover new
VQM-mediated asymmetric transforma-
tions, clarify their reaction mechanisms,
and develop their applications for the syn-
thesis of useful chiral functional materials.
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