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Abstract: Machine Learning and Data Science have enjoyed a renaissance due to the availability of increased 
computational power and larger data sets. Many questions can be now asked and answered, that previously 
were beyond our scope. This does not translate instantly into new tools that can be used by those not skilled in 
the field, as many of the issues and traps still exist. In this paper, we look at some of the new tools that we have 
created, and some of the difficulties that still need to be taken care of during the transition from a project run by 
an expert, to a tool for the bench chemist.
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1. Introduction
Drug discovery has been a difficult endeavour with only low 

rates of success.[1] Many initiatives have been tried to improve 
these low rates, as even a minute improvement will lead to great 
rewards. During the history of drug discovery, a lot of data and 
information has been gathered but not organised and exploited in 
a meaningful way. If the bench chemist could harness the power of 
this knowledge, decision making could be made on a more ratio-
nal basis, and hopefully the discovery goals could be reached with 
fewer compounds made and assayed. This requires the investment 
in data science to prepare the tools needed to assist the bench 
chemist. There is still so much that we do not know about human 
biology, that the combination of experience and domain knowl-
edge with modelling will still be better than the two separated.

1.1 What is Data Science?
Data science can be organised into six areas, according to 

Donoho.[2]

1. Data exploration and preparation
2. Data representation and transformation
3. Computing with data
4. Data modelling
5. Data visualization and presentation
6. Science and data science
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2.3 Data Modelling
Models can either be explanatory or predictive. An example 

of a well-known explanatory model would be the rule of 5.[8] 
Explanatory models describe the data set they were built for very 
well, but do less well when the prediction being made extrapo-
lates from the training data sets. This is a particular danger for 
neural net models, and careful control experiments have to be run. 
However, when the data set is very large, these techniques can be 
very valuable. In the field of generative chemistry, one can train 
a network to learn the grammar of chemical structures, expressed 
as SMILES strings, and generate many new valid structures;[9] 
examples are given in Fig. 1. The next level is to bias the structure 
generation towards the much smaller space of a discovery project, 
where there is insufficient data to build a standalone model.[10] 
Generative chemistry, like its predecessor de novo chemistry, can 
produce challenging structures; our SA score tool[11] has proved to 
be very useful to help prioritise suggested structures.

Predictive models are much more useful in the discovery con-
text, as the goal is to move beyond what is known for provided 
structures that have been optimised and tailored to the goals of the 
discovery project. This requires careful selection of the data used 
to train the model, to test the model, and to validate the model as it 
is being used. We use time-splits,[12] as this is the most realistic ap-
proximation to the process of drug discovery, where new chemo- 
types are being discovered and elaborated on, rather than the 
continuous exploitation of existing scaffolds. The performance is 
driven often by the mean average error between the predictions 
and the experiment. This gives an indication of the confidence of 
the prediction. Gaussian process modelling is also being used, as 
the error in prediction is not constant across a data set (Fig. 2). It 
is smaller in regions of high numbers of structures and lower in 
sparsely populated regions. Predictive models may not be very 
explanatory, in the sense they do not explain the reasoning behind 
the prediction, so it is not obvious how to exploit the predictions 
through the design of new structures. This might be partially solv-
able through Inverse Design[13] or generative chemistry (covered 
above). 

The data sets in pharma are also very sparse, that is, only 
a few percent of the data matrix is filled in (where rows repre-
sent compounds and columns assays). Scientists in the Novartis 
Emeryville site have developed methods for imputing the miss-
ing data[14] so that we can still model the missing data and feed 
that into further programs. It is necessary to make clear which 
data was measured and which imputed if the model results are 
to be included in the central data repository. Novartis is also part 
of the MELLODDY IMI project;[15] it has been shown that com-
bining data from different sources can improve all models. The 
challenge is how to share information without compromising in-
tellectual property. We are also exploring how to use public data 
sources, for example, ChemBl,[16] so that models and protocols 
can be shared.

We will use this scheme to organise the paper into similar sec-
tions, looking towards a final goal of providing tools to the chem-
ist that can predict reliably, with information about confidence 
and applicability of the model, in a way that the results are simple 
to interpret by scientists without high levels of data science skills.

2. Data Exploration and Preparation
It is said[3] that 80% of the work in preparing models is to 

understand and clean the primary data. This curation effort is par-
ticularly important when dealing with public data sources derived 
from primary data.[4] Our own studies indicate that most biologi-
cal assays have a log error of 0.2–0.3 units, depending on the 
complexity of the assay. We will return to this observation in the 
section on data presentation. There are also artefacts and outliers 
in the data, some of which might be genuine, others caused by 
more mundane effects such as edge effects on a screening plate. 
The use of geometric averages (arithmetic averages in log units) 
is encouraged as the data is explored. Internal tools have been 
developed to build rudimentary models from any data set, to ex-
plore how much initial signal there is in the data, before starting 
on the expensive data cleaning process. The data should also be 
examined in terms of the guidelines laid down for QSAR data 
sets. [5] It is often found that the data set is not suitable for model-
ling; a common cause is an insufficient number of actives in the 
data set. In Novartis, this is addressed by the design and synthesis 
of project-focussed libraries around hits, to amplify the signal.

2.1 Data Representation and Transformation
In most pharma companies, the primary observations (assay 

results) can be contained in several different databases and for-
mats. Considerable efforts are being made to unify the means of 
access to the data, so that the user does not have to work hard to 
merge data from screening and in vivo models. Although most 
chemists deal in the concept of IC50, this is secondary data de-
rived from fitting of a sigmoid function to a dose-response curve. 
Visualization of the curves is important to the evaluation of the 
quality of the data before transformation; we have developed tools 
to facilitate this manual checking of the primary data. As chem-
ists are interested in structure–activity relationships, a suitable 
set of descriptors for structures needs to be found. In Novartis, 
descriptors available in rdkit[6] are used first although many other 
descriptors can be computed; we have developed new descriptors 
for chirality to address gaps seen in certain projects.[7] Descriptor 
selection is based on the observation to be modelled, and the size 
of the data set, so that results can be obtained in a reasonable time 
given the compute and disk resources available; the results should 
be interpretable by the chemist.

2.2 Computing with Data 
In the past, model building was performed on any platform 

of experience, from Fortran, to within commercial packages. This 
caused many issues with maintenance (rebuilding, licensing) of 
models. We also have a goal of making models open source when 
publishing them. This has moved us towards the adoption of open 
source paradigms, such as python, together with rdkit and scikit 
learn as our primary tools to work with data. We can capture the 
data used to train and test the models, the versions of the software 
and the parameters and descriptors. For models that span across 
multiple projects (for example solubility models or similar), we 
set up a model review team of experts that carefully review models 
prior to their release. Checks are also put in place to see when the 
performance of a model is becoming unacceptably degraded for 
new data, so that it can be rebuilt when necessary. The use of stan-
dardised model building protocols makes this process much easier 
and with lower maintenance costs. There is still a philosophical 
issue for the users when models (and hence predictions) change. 
Versioning of models needs to be carefully documented. Fig. 1. A random selection of structures generated by our LSTM model.[9]
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made, it is important for the prediction not to be given to excessive 
number of significant figures, especially when the input data is 
only accurate to 0.3 log units. This is a common failing of most 
user interfaces.

We have experimented with glowing molecules,[18] where 
the atoms in the molecule that contribute most to the observa-
tion are highlighted. It has been very important to also perform 
sensitivity analysis, as there is anecdotal evidence that the re-
gions identified as important can vary strongly according to the 
nature of the training set. This should not be the case. The use 
of matched molecular pairs or series seems to be preferred by 
the chemist, as it can also tie in with the synthetic route being 
used, given more directed exploration of the SAR in a faster 
make-assay cycle.

2.4.1 Organisation of Large Chemical Data Sets into 
Topics

Handling large sets of molecules can be very complex and re-
quires compromises that often come at the expense of interpret-
ability. For this reason we have developed an alternative, novel ap-
proach called ‘chemical topic modeling’ which has been adopted 
from the text-mining field (the workflow is shown in Fig. 3).[19] 
This probabilistic framework offers an intuitive and meaningful 
way to organize and explore large chemical data sets. For example, 
on the ChEMBL database, a very heterogonous set of more than 
1.6 million molecules, the method has proven its efficacy and ro-
bustness: a 100-topic model provided interesting topics like ‘pro-
teins’, ‘DNA’ or ‘steroids’. These rather general, yet nonetheless 
sensible and humanly understandable topics can provide the basis 
for further investigation. Using smaller data sets also more fine-
grained information can be extracted: topics related to, for exam-
ple, beta-secretase or sphingosine inhibition are found to be more 
commonly associated with certain chemical fragments than others 
(Fig. 4). A picture can be built up of the key pieces responsible for 
activity, suggesting further structural ideas for investigation.

3. Interfacing to Tools used by the Bench Chemist
Novartis was one of the early proponents of putting chemin-

formatics and modelling tools in the hands of the chemists.[20–22] 

2.4 Data Visualisation and Presentation
Many of the topics discussed above have been described from 

the point of view of a data scientist. However the models will 
have very little impact on the design- and decision-making pro-
cess unless the conclusions are presented in an understandable 
way.[17] We have discussed the need for results to be presented as 
a prediction with a confidence. For categorical models (a com-
pound is classed as soluble or insoluble), we can go a step further. 
The limits of what we mean by soluble or insoluble can be set in 
agreement with the users. The performance of the classification 
can then be used in the output (the prediction that this compound 
has a solubility < 10 microM will be right in 90% of cases). There 
is also the very important class, ‘Not conclusive’. This means that 
the model does not know enough to make a confident prediction 
and would benefit from the data provided by making and assaying 
the compound. Identifying gaps in the model is key to improving 
the model. In addition, providing only predicted classes (i.e. any-
thing that is not ‘Not conclusive’) with very high confidence to 
end users is important as it creates trust in the models for prioritis-
ing compounds prior to synthesis. When a numerical prediction is 

Fig. 2. An illustration of how estimation error in a prediction varies with 
data density for a Gaussian process model, taken from scikit-learn.org/
stable/auto_examples/gaussian_process/plot_gpr_noisy_targets.html.

Fig. 3. Chemical topic modeling workflow. To make the connection to chemical topic modeling, the terms used in the context of topic modeling of 
text documents are shown as grey text. Picture adapted from Schneider et al. JCIM 2017.[19] Reprinted with permission. Copyright 2017 American 
Chemical Society.
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3.2 Science about Data Science
Dohono defines the effectiveness of a tool (model) is related 

to the probability of deployment times the probability of effective 
results once deployed.[2] In this context, the probability of deploy-
ment should depend on the quality of the model, however that is 
defined, rather than the phenomenon being modelled. It is not the 
view here that inferior models should be accepted because they 

An example might be the interactive web tool for navigating in 
property space (Fig. 5). One of the key principles used in tools 
such as FOCUS is modularity (Fig. 6). Over time key needs for 
project teams change (for example moving from mostly structure-
enabled projects to more data-driven projects) and only if systems 
are able to add and remove functionality without having to retrain 
end users, will they be accepted. Also, recent internal interviews 
show that it is not feature completeness that is wanted to by end 
users but much more a tight integration of features to enable typi-
cal workflows. 

As the trend moves into data analysis, a new way of present-
ing data is needed, with the facility for the users to manipulate 
the data themselves and develop their own local models, based 
on a deep understanding of their SAR and goals. Internally this 
is done via preprocessed data incorporated into Spotfire ses-
sions that are easy to setup by non-experts but other solutions 
are available.

3.1 Retrosynthetic Analysis
An early goal in the field of Artificial Intelligence has been the 

retrosynthetic analysis of compounds.[23] Today, this goal seems to 
be within reach. Novartis is part of an industrial/academic partner-
ship[24] to explore the application of machine learning to the cor-
pus of reactions in the literature and to encode this into a system 
that can predict retrosynthetic routes and learn from new data. 
Other approaches are also being explored.[25]

Fig. 4. Beta secretase and Sphingosine 1-phosphate receptor Edg-1 topics. (top) Five most probable fragments of both topics along with their prob-
abilities. (bottom) Top six molecules of both topics. All of those have a probability of more than 90% for their topics. The topic is directly highlighted 
in turquoise/light orange within the compound structures. Reprinted with permission from Schneider et al. JCIM 2017.[19] Copyright 2017 American 
Chemical Society.

Fig. 5. Interactive web tool enabling navigation in the property space of 
organic substituents supporting bioisosteric design.
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model an important observation, unless the inferiority is clearly 
pointed out and understood by the user. The probability of effec-
tive results in pharma is more about how many decisions were 
influenced by the results of a model, which means capturing data 
on both compounds that are made and those that are deprioritised. 
This implies tracking of all parts of the design-make-test-analyse 
cycle. This is not an easy undertaking, but it is necessary to dem-
onstrate the role that data science and modelling can play in mak-
ing the drug discovery process more efficient.

4. Conclusions
Machine Learning and Data Science will undoubtedly have 

an increasing influence on the daily work of the bench chemist. 
The immaturity of the tools and techniques is such that care is still 
needed and the provision of data science skills within discovery 
chemistry teams will be vital. A thoughtful partnership is being 
developed in Novartis between these two roles, so that models and 
tools are used appropriately and lessons from their usage are fed 
back into the next cycle of data analysis and tool building. The 
future medicinal chemist will take robust tools as a given, but at 
present there is still much be learnt.
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