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Pharmacoepidemiology and Big Data 
Analytics: Challenges and Opportunities 
when Moving towards Precision Medicine 
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Abstract: Pharmacoepidemiology is the study of the safety and effectiveness of medications following market ap-
proval. The increased availability and size of healthcare utilization databases allows for the study of rare adverse 
events, sub-group analyses, and long-term follow-up. These datasets are large, including thousands of patient 
records spanning multiple years of observation, and representative of real-world clinical practice. Thus, one of the 
main advantages is the possibility to study the real-world safety and effectiveness of medications in uncontrolled 
environments. Due to the large size (volume), structure (variety), and availability (velocity) of observational health-
care databases there is a large interest in the application of natural language processing and machine learning, 
including the development of novel models to detect drug–drug interactions, patient phenotypes, and outcome 
prediction. This report will provide an overview of the current challenges in pharmacoepidemiology and where 
machine learning applications may be useful for filling the gap. 
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1. Introduction 
Pharmacoepidemiology is the study of the use and effects of 

medications post-market approval. In the modern era, medica-
tions are approved following rigorous clinical testing.[1] While 
large phase III Randomized Clinical Trials (RCTs) are the hall-
mark of drug approval, and provide the highest level of evidence 
regarding a causal assessment of the efficacy of a medication, it is 
well established that they cannot provide all the necessary infor-
mation regarding medication safety and effectiveness.[2–4] This is 
due to the inherent limitations of RCTs, which are conducted in 

restricted patient groups (both size and representativeness), under 
highly controlled environments, and for relatively short durations. 
Importantly, RCTs are limited in the ability to detect rare adverse 
events and long-term effects. However, despite the limitations of 
RCTs they remain the ‘gold standard’ for determining the efficacy 
of a medication and the bench-mark for all observational studies.

Nevertheless, while RCTs provide optimal information on 
the short-term safety and efficacy of a medication under ideal 
controlled circumstances, the real-world safety and effective-
ness remains largely unknown at the time of market approval. 
Consequently, post-market surveillance is essential to fill the gaps 
on the use, safety, and effectiveness of medications when used in 
more diverse patient populations and without strict monitoring of 
use.[5] This includes studying the real-world safety and effective-
ness of medications in patients that were excluded from RCTs, 
and in every-day practice where prescribing occurs without ran-
domization and medication adherence is not monitored. 

There are a number of study designs available in observa-
tional post-market surveillance research, each with advantages 
and disadvantages.[6] Moving up the pyramid of evidence, these 
include case-reports, case-series, cross-sectional, time-series, 
case-control and cohort studies. Like any scientific research, the 
choice of study design for an observational pharmacoepidemiol-
ogy study depends on the research question and data source. The 
most frequently used study design in pharmacoepidemiology 
studies is the cohort study design. Conceptually, these are the 
closest to RCTs, as patients are ‘recruited’ into the study based 
on the exposure and followed forward in time to observe the fre-
quency of outcomes. However, rather than the researcher allocat-
ing patients to specific treatment groups, cohort studies observe 
ongoing medical care in observational data. The data sources for 
pharmacoepidemiology studies derive from routinely collected 
real-world healthcare data (RWD).[7,8] These databases allow for 
the inclusion of very large and representative patient populations 
that contain more complex patient groups (e.g. elderly patients). 
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Data sources such as the UK Clinical Practice Research 
Datalink (CPRD), the Danish National Healthcare Register, and the 
Ontario healthcare data available through the Institute for Clinical 
Evaluative Sciences (ICES) are commonly used primary care and 
administrative data in pharmacoepidemiologic research. [10–19] 
These data sources can link patient information throughout the 
healthcare system using individual patient identifiers, thereby pro-
viding a near complete overview of a patient trajectory. 

Once linked, these data sources include tens of tens-of-thou-
sands, if not millions, of patient records with multiple years of 
follow-up stemming from different data sources. While the ma-
jority of the data are structured or semi-structured in nature, we 
are increasingly seeing the emergence of unstructured text-heavy 
data. Importantly, due the routine collection of data for monitor-
ing of patient care or budgeting, the data are available quickly and 
at a relatively low cost. Thus, RWD in pharmacoepidemiology 
fulfills the ‘3 V’s’ of ‘Big Data’ – volume, variety and velocity.[20]

Over the previous decade, there have been further efforts to 
grow the size and completeness of RWD to permit powerful anal-
ysis within and across countries. This includes projects like the 
OHDSI platform in Europe,[21] the Canadian Institute for Health 
Research CNODES in Canada,[22] and the Sentinel Initiative in the 
US.[23] The projects develop common data models (CDMs) to per-
mit fast and efficient epidemiologic and pharmacoepidemiologic 
studies across multiple datasets, thereby developing an extremely 
large body of evidence that is representative and reproducible 
across databases and countries.

3. Challenges in Pharmacoepidemiology
While RWD are large and rich sources of healthcare data, the 

observational nature brings a number of unique challenges.[8,24,25] 
As previously identified, the data were not collected for research 
purposes, which leads to concerns regarding the accuracy and va-
lidity of the data when used on pharmacoepidemiology studies. 
In particular, there may be concerns regarding how medications 
are dispensed in clinical practice, confounding, and missing data. 

In contrast to RCTs where patients are randomly allocated to 
treatment groups, medical doctors base the selection of treatment 
on a number of factors including patient characteristics, severity 
of illness, available evidence and patient preference.[26] As a re-
sult, there may be important differences between patients receiv-
ing different medications. This imbalance between user groups 
can significantly bias study results if not properly controlled for in 
the study design or analysis. For example, if all patients with very 
severe illness receive medication B, while healthier patients re-
ceive medications A and C, it would not be surprising to find that 
patients with medication B have worse outcomes when compared 

As a result, a well-conducted and analyzed pharmacoepidemiol-
ogy study can provide information on the effectiveness and safety 
(particularly on rare adverse events) that is better than RCTs.[9] 
However, the observational nature of data collection brings about 
numerous challenges that must be considered when designing, 
analyzing and assessing a study to minimize bias and ensure the 
validity and accuracy of the results.

The remainder of this article reviews the databases available 
for pharmacoepidemiology research, the challenges that remain in 
current practice, and the potential for machine-learning analysis 
to provide new insights into medication safety and effectiveness 
research.

2. Real-World ‘Big Data’ in Pharmacoepidemiology
The field of pharmacoepidemiology has grown substantially 

in the past two decades as the availability and size of RWD has ex-
panded. Unlike primary data collection, RWD include automated 
electronic records of interactions with healthcare services that are 
routinely collected for administration or payment purposes. These 
data are therefore not collected for research purposes and do not 
include systematic data collection that are tailored to the research 
question.[8] However, these secondary sources of data have a num-
ber of advantages as they are less time-consuming, cheaper, more 
representative of the general population, and large in size permit-
ting the study of rare events and sub-group analyses.

Typically, RWD data within healthcare fall within two pri-
mary categories – electronic medical records or administrative 
claims data.[7] While the former often provides clinical informa-
tion regarding symptoms and diagnostic test results, the later pro-
vides large and representative information at the population level. 
Importantly, both forms of RWD include patient populations that 
may have been excluded from RCTs; such as the elderly, those in 
nursing homes, those with high comorbidities/polypharmacy, and 
pregnant women. 

Traditionally, RWD include information on medications, pri-
mary care and specialist visits, hospitalizations and vital statistic 
registers. However, recently there has been an emergence of new 
data sources, including registries of rare disease, expensive drugs 
and medical devices; biobanks with biomedical and genetic data; 
and patient-generated data resulting from wearable devices, social 
media, or patient-reported outcome measures (PROMs). Linkage 
of these individual data sources over time provides an extremely 
large and rich data source for conducting pharmacoepidemiologic 
research (Fig. 1). Data linkage is extremely important in order to 
generate a complete picture of a patients’ healthcare trajectory 
and permit an assessment of causality (i.e. medication exposure 
prior to outcome occurrence). 

Fig. 1. Overview of centrally linked 
real-world data (RWD).
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4. Opportunities and Challenges for Machine-Learning 
in Pharmacoepidemiology

While machine-learning methods have seen widespread use 
within the financial and retail sectors, the uptake within health-
care, and particularly pharmacoepidemiology, has been limited. 
Most recent applications include using data-mining techniques 
to detect new safety signals in pharmacovigilance data,[32,33] pre-
diction modeling,[34,35] and cluster analysis.[36,37] However, while 
there is increasing optimism of the future of machine learning 
in pharmacoepidemiology, it is important to consider the areas 
where machine learning would provide benefits over traditional 
methods. Currently, two burgeoning areas for machine-learning 
applications are in advancing our understanding of heterogeneous 
patient populations and improving the prediction of treatment re-
sponse/safety.

Likely one of the most promising opportunities for machine-
learning within pharmacoepidemiology is improving treatment 
prediction within heterogeneous patient groups. Indeed the high-
dimensional nature of RWD lends itself well to developing pat-
tern-recognition in heterogeneous patient groups, which can be 
used to improve patient characterization and longitudinal treat-
ment prediction. In light of the trend towards precision medicine, 
one exciting opportunity for data-driven analyses lies in the appli-
cation of deep-learning and natural language processing. Previous 
studies have applied unsupervised machine-learning methods to 
identify novel distinct phenotype clusters in heterogeneous patient 
populations, including applications in type 2 diabetes, chronic 
obstructive pulmonary disease, corticosteroid users and intensive 
care patients.[36–40] While there are a number of unsupervised and 
supervised clustering methods, the self-organizing map (SOM) 
is one of the most popular data-driven approaches due to the ty-
pology preserving mapping.[41] SOMs convert multidimensional 
data into a 2-dimensional visualization (Fig. 3), thereby allowing 
the identification of homogeneous sub-groups within data. Thus, 
while traditional stratification may be done based on a limited 
number of known clinical factors, such as age and sex, SOMs 
provide the opportunity to identify previously unknown clusters 
of common clinical characteristics within a diverse patient popu-
lation. Neural network models are also frequently used for disease 
prediction within healthcare.[42,43]

4.1 Application in Pharmacoepidemiology: Predicting 
Treatment Response in Rheumatoid Arthritis Patients

Rheumatoid arthritis is a chronic and progressive autoimmune 
disease that is highly heterogeneous in the clinical presentation and 
progression.[44,45] While there is no cure for rheumatoid arthritis, 
there are a number of treatment options available to manage dis-
ease activity and optimally achieve clinical remission, including 
biologic disease modifying anti-rheumatic drugs (bDMARDs), 
namely the anti-tumor necrosis factor-alpha inhibitors (TNFi). 

to medications A and C. This confounding by indication is one of 
the most challenging concepts in pharmacoepidemiology,[26,27] as 
the selection of an adequate control group is imperative to mini-
mize the potential for selection bias leading to erroneous conclu-
sions. 

The propensity score (PS) analysis has become one of the 
most commonly used methods to control for confounding by indi-
cation. In brief, the PS is a summary statistic stemming from mul-
tilevel modelling to combine all confounding factors into a single 
score that can be used in adjustment, matching or stratification to 
balance a patients’ likelihood for receiving a medication. [28] While 
a PS analysis typically uses only observed variables that are iden-
tified a priori as confounders (i.e. variables that are associated 
with both the exposure and outcome, but do not lie on the causal 
pathway), the high-dimensional PS (HDPS) is an automated data-
driven approach that includes a large number of variables that may 
serve as proxies for unmeasured variables.[29] However, imple-
menting HDPS analysis in time-varying models is challenging, 
and critics often cite the ‘black-box’ effect of variable selection 
that fails to provide transparent estimates and replication is dif-
ficult.[30]

While RWD bring about a number of methodological and ana-
lytical challenges, they have led to important advances in clini-
cal practice and public health policy. Indeed, evidence produced 
through pharmacoepidemiology studies is often at the forefront 
of changes to clinical guideline recommendations and regulatory 
decision-making. Moreover, due to the large size of RWD, it is 
often powered to conduct sub-group analyses. This is a critical 
advantage, particularly as the field of medicine aims to move to-
wards precision medicine. 

Indeed, one of the primary goals in clinical pharmacoepidemi-
ology research is to identify the optimal risk-benefit profile for a 
medication to guide physician prescribing.[31] However, in highly 
heterogeneous patient populations, this can be challenging when 
including the entire patient population as a whole. Rather, targeted 
sub-group analyses based on clinical factors, or novel clustering 
analysis, may reveal differential treatment response profiles. As 
such, this approach would be a first step towards tailored (or preci-
sion) medicine (Fig. 2).

However, while traditional methods such as survival analysis 
and logistic regression, have provided significant advancements 
in our knowledge of the utilization, safety and (comparative) ef-
fectiveness of medications, there remains a gap in our understand-
ing of complex patient phenotypes, polypharmacy and dynamic 
longitudinal progression of chronic diseases. This is where ma-
chine-learning methods may have a substantial role within phar-
macoepidemiology. In particular, machine learning methods may 
be superior in finding new features or non-linear relationships in 
the data, which can ultimately aide in hypothesis generation and 
drive research forward to improve treatment prediction.

Fig. 2. Illustration of trajectory of 
precision medicine in pharmaco-
epidemiology. Identifying homoge-
neous phenotype clusters from a 
heterogeneous patient population 
to improve treatment prediction. 
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or treatment outcomes. Recently, Kan et al.[55] applied LASSO 
regression to successfully identify factors associated with unfilled 
prescriptions in a rheumatoid arthritis patient population. Thus, 
based on the simplicity and interpretability of LASSO regression, 
it is proposed that this may be an optimal approach to develop 
clinical tools to guide clinical decision making. 

4.2 Limitations of Machine-learning in 
Pharmacoepidemiology

Machine-learning and artificial intelligence are currently 
buzzwords within healthcare. While they are highly attractive 
due to their ability to analyze diverse data types and incorporate 
multiple variables into risk stratifications and outcome prediction, 
there is a number of limitations, or areas of caution, that must be 
addressed. An important factor to consider when using RWD is 
that researchers must have sound knowledge of the data quality/
structure, an awareness of the machine learning tools, and an un-
derstanding of the potential clinical implications. Not all research 
questions and data are suitable for machine-learning methods, and 
a blind application will lead to inappropriate use and potentially 
misleading research findings. With access to tens-of-thousands or 
even millions of patient records, it is highly important that care 
is taken to ensure appropriate use. Applying advanced algorithms 
universally to different data sources may lead to highly inaccurate 
results. Indeed, understanding how the data were built and the po-
tential for missing or inaccurate data is vital to develop clinically 
relevant results. We must also be cognizant of the fact that patients 
and treatment practices vary across care settings, geographical 
regions and over time. It is therefore critical that predictive ma-
chine-learning algorithms in pharmacoepidemiology consider the 
robustness of algorithm in different settings (databases and time 
periods). Thus, it is highly encouraged to develop interdisciplin-
ary teams that include pharmacoepidemiologists, data-scientists, 
and clinicians to ensure adequate knowledge on all aspects of 
databases limitations, algorithm appropriateness and clinical rel-
evance are incorporated. 

Finally, the possibility to improve treatment/outcome predic-
tion in complex patient groups is one of the most exciting ad-
vantages with machine-learning, however it is important that 
we remain mindful that many prediction algorithms in machine 
learning research have been built and evaluated on metrics that 
lack clinical relevance. For example, a model with near perfect 
area under the receiver operating characteristic curve (AUC) may 
lack the needed sensitivity or positive predictive value for clini-
cal use. Thus, as identified above there will likely be a trade-off 
between accuracy and interpretability. While LASSO regression 
is discussed in the above case example, gradient-boosting or ran-

However, up to 40% of patients do not achieve clinical response 
(treatment failure) to the initial TNFi treatment,[46–52] while others 
(~20%) will lose response over time.[53] Thus, a primary goal in 
rheumatology is to develop personalized approaches to treatment 
selection to minimize the likelihood of treatment non-response, 
which delays remission thereby prolonging painful joint swelling 
and eventual bone erosions. 

Despite a number of studies, the prediction of treatment-
response remains sub-optimal in rheumatoid arthritis, and clini-
cians often adopt a trial-and-error approach to treatment selection. 
Although machine-learning algorithms are well-suited to develop 
prediction models that can handle complex time-dependent inter-
actions of clinical factors, and are therefore an optimal approach 
to handle the heterogeneity in rheumatoid arthritis patients, to date 
they have not been applied to predict individual treatment suc-
cess (e.g. comparative effectiveness). Norgeot et al.[42] recently 
concluded that use of recursive neural networks could be applied 
to predict changes in clinical disease activity index (CDAI) scores 
based on a combination of disease activity history, laboratory val-
ues and medications. In their analysis, Norgeot and colleagues 
used electronic medical data from two hospital settings to train 
and test their model performance to accurately predict changes in 
CDAI scores between visits.[42] 

While recurrent neural networks are one approach, there is a 
need to develop models that are clinically explainable to ensure 
clinical application. If we develop a model that can predict treat-
ment response to adalimumab (a TNFi) with 99% accuracy, but 
this is difficult to interpret or contains too many variables to have 
clinical relevance, it will certainly not improve patient care. Thus, 
while neural networks may increase prediction accuracy, they 
may limit our interpretability.[43] Conversely, logistic regression 
has a high-level of interpretability but low accuracy for complex 
longitudinal outcomes. Thus, within pharmacoepidemiology ap-
plications, we must search for the optimal balance between these 
two aspects.[54]

With this in mind, either LASSO regression or gradient boost-
ing may be optimal methods to identify the most important pa-
tient-specific features for success with individual treatment op-
tions (e.g. adalimumab vs. abatacept). Given the high number 
of variables within RWD, the penalized LASSO (least absolute 
shrinkage and selection operator) regression, which builds the 
decision process based on only the most important clinical fea-
tures, may be best suited for rare outcomes. Lund and colleagues 
recently developed a prediction model for 5-year mortality among 
elderly patients in the United States using LASSO regression.[34] 
Within rheumatology, only a small number of studies have ap-
plied LASSO regression to the prediction of rheumatoid arthritis 

Fig. 3. Simplified depiction of self-
organizing map. The first-frame (1) 
identifies the visible input vectors 
and the visible output nodes. The 
second frame (2) visualizes the 
identification of the best matching 
unit (BMU). For each node, the 
algorithm finds the node closest 
to it, and the node with the closest 
distance is the BMU. This process 
is repeated for the different rows 
to identify the BMU. Frame three 
(3) is a visual depiction of a result-
ing SOM.



1016 CHIMIA 2019, 73, No. 12 ArtificiAl intelligence in SwiSS chemicAl reSeArch

dom-forest analyses may also be ideal approaches for application 
with clinical practice. Another aspect to consider is the potential 
to supplement prediction models with improved data visualiza-
tion techniques to improve effective communication of results. 
Indeed, methods that can improve the understanding behind the 
predictions will be incredible useful within clinical practice and 
assist with transparency and reproducibility. For example, SHAP 
(SHapley Additive exPlanations) and LIME (Local Interpretable 
Model-agnostic Explanations) may be useful tools to provide in-
sights into the direction each feature contributes within the model. 

5. Conclusion
While machine-learning in pharmacoepidemiology is still in 

its infancy, there are a number of reasons to be excited about the 
opportunities of machine-learning to improve analytic efficiency, 
cluster identification and prediction estimates in clinical practice. 
Indeed, studies have demonstrated the promise of deep-learning 
approaches to uncover novel phenotype clusters and improve pre-
diction in heterogeneous patient groups in RWD.[36,38,56,57] There 
are numerous clinical areas where prediction of treatment success 
or adverse events remains challenging due to the complex nature 
of the disease, or interactions over time with other comorbidities 
and medication use. As discussed here, complex patient groups, 
such as rheumatoid arthritis, is one area where machine-learning 
may have the greatest impact. Thus, it is no longer a question of 
can machine-learning be applied to the field of medicine and phar-
macoepidemiology, but how do we ensure the appropriate use. 
Although the large scale and multidimensional nature of RWD 
is appealing to data-scientists, not all data, nor all research ques-
tions, will be suited to machine-learning methods. Future efforts 
must therefore be focused on identifying the areas where ma-
chine-learning provides advantages over traditional techniques. 
Moreover, given the clinical application of pharmacoepidemiol-
ogy research, advancements in machine-learning with RWD must 
focus on transparency in methodology to ensure results are re-
producible and translatable to clinical audiences. Nevertheless, 
while we must remain mindful of the limitations, the emergence 
of large RWD over the last two decades has opened the door for 
new discoveries in big data analytics, including machine-learning, 
and we have likely only scratched the surface of the possibilities.
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