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Abstract: Chemical space is a concept to organize molecular diversity by postulating that different molecules 
occupy different regions of a mathematical space where the position of each molecule is defined by its properties. 
Our aim is to develop methods to explicitly explore chemical space in the area of drug discovery. Here we review 
our implementations of machine learning in this project, including our use of deep neural networks to enumerate 
the GDB13 database from a small sample set, to generate analogs of drugs and natural products after training 
with fragment-size molecules, and to predict the polypharmacology of molecules after training with known bioac-
tive compounds from ChEMBL. We also discuss visualization methods for big data as means to keep track and 
learn from machine learning results. Computational tools discussed in this review are freely available at http://
gdb.unibe.ch and https://github.com/reymond-group. 

Keywords: Chemical space · Data visualization · Deep learning · Molecular databases · Polypharmacology

Josep Arús-Pous studied Computer 
Engineering at the Polytechnic University 
of Catalonia (UPC). After working in 
the private sector for seven years, he 
gained a further MSc in Bioinformatics 
at the Pompeu Fabra University (UPF) in 
Barcelona. He is currently in the last year 
of a Marie Skłodowska-Curie European 
Industrial Doctorate (BIGCHEM) at 
both the University of Bern (with Prof. 

Jean-Louis Reymond) and AstraZeneca Gothenburg (with Dr. 
Hongming Chen and Dr. Ola Engkvist). His main research focus 
is on using intensive computational tools and deep learning to 
develop new methods of chemical space exploration.

Mahendra Awale is postdoctoral research-
er in the CADD group at F. Hoffmann-La 
Roche, Basel, Switzerland. He studied 
pharmaceutical science at AISSMS college 
of pharmacy in Pune, India and obtained his 
PhD in Cheminformatics at the University 
of Bern, Switzerland, in 2015. After post-
doc experience at University of Bern, he 
joined the CADD group at Roche in 2019. 
His research focuses on exploration of 

small molecule chemical space for drug discovery projects. To 
this end, he develops novel computational tools for virtual screen-
ing, visualization, target prediction, structure-activity relationship 
analysis. He also focuses on the integration of various machine 
learning approaches in drug design projects.

Daniel Probst has a bachelor’s degree in 
computer science from the University of 
Applied Sciences in Biel with a focus on 
computer perception, virtual reality, and ar-
tificial intelligence and a master’s degree in 
bioinformatics from the University of Bern 
with a focus on molecular biology. Before 
starting his tertiary education, he worked 
for six years as a systems engineer and 
software developer. He is currently a fourth 

year PhD student in the research group of Jean-Louis Reymond 
at the University of Bern. His main research interest is the ap-
plication of algebraic computation and computer graphics to the 
exploration and visualization of chemical space.

Jean-Louis Reymond is chemistry professor 
at the University of Bern, Switzerland. He 
studied chemistry and biochemistry at the 
ETH Zürich and obtained his PhD in 1989 
at the University of Lausanne on natural 
products synthesis. After a post-doc and as-
sistant professorship at the Scripps Research 
Institute, he joined the University of Bern in 
1997. His research focuses on expanding the 
accessible chemical space to novel scaffolds 

for drug design, including the synthesis of topologically diverse 
peptides such as dendrimers and innovative small molecules from 
the chemical universe database GDB (http://gdb.unibe.ch). 

1. Introduction
The periodic table organizes the known 118 elements as rows 

and columns from which many of their properties can be under-
stood and predicted. The situation is more complicated when com-
bining elements to form molecules because the possibilities are 
endless and potentially overwhelming. Chemical space is a con-
cept to organize molecular diversity by postulating that different 
molecules occupy different regions of a mathematical space, where 
the position of each molecule is defined by its structural and func-
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promising results.[20–22] These examples focus on generating new 
and potentially bioactive molecules by training a neural network 
with molecules from databases such as ChEMBL,[23] which con-
tains compounds known to be bioactive, and generate molecules 
around the known drug-like chemical space. 

In collaboration with Ola Engkvist and coworkers at Astra 
Zeneca within the BIGCHEM project,[24] we have recently used 
RNN for SMILES generation for our GDB project to answer the 
question whether a RNN might be able to cover a complete sec-
tion of chemical space when trained with a small subset of that 
chemical space, and thereby substitute exhaustive enumeration.[25] 
Given that generative models are sampled with replacement (i.e. 
any given molecule can be repeatedly sampled), a mathematical 
model based on the ‘Coupon collector problem’ was used to as-
sess whether the model was able to create the whole database in a 
way that is complete (all molecules in it sampled), closed (no mol-
ecules outside of it sampled) and uniform (all molecules have the 
same probability of being sampled). We tested the approach with 
our database GDB13, which has a very large yet manageable size 
of 975 million molecules. To our surprise, we found that a RNN 
trained with a random sample of 1 million molecules (only 0.1% 
of GDB13) was capable of generating 69% of the database by 
sampling two billion molecules (Fig. 1). This first approach used 
canonical SMILES (the same representation for each molecule) 
and resulted in an uneven sampling of GDB molecules across 
molecular properties, having problems to sample highly cyclic 
molecules. Later, we found that RNN deliver a much more even 
sampling when trained with randomized SMILES (different rep-
resentations at each epoch), yielding for the same experiment 83% 
of GDB-13 and a much more uniform distribution.[26] Moreover, 
models trained with smaller training set sizes (10,000 or even 
1,000 molecules) were able to generate 63% and 34% of GDB-13 
when sampled 2 billion times respectively, further highlighting 
the data augmentation capabilities of randomized SMILES. These 
studies show for the first time that deep generative models have 
the potential to generalize an entire chemical space from a limited 
subset and might therefore offer a viable alternative to exhaustive 
enumeration as an exploration tool.

2.2 LSTM Neural Networks for Fragment-based Drug 
Analog Generation

One of the defining features of our GDB databases is the very 
large number and high diversity of molecules at the scale of frag-
ments, defined as molecules below 300 Daltons with only up to 

tional properties.[1,2] One often refers to chemical space to describe 
a field of inquiry, e.g. “we work in that specific (chemical) space”. 

In our research we aim to develop computational tools to ex-
plicitly explore chemical space focusing on molecules relevant for 
drug discovery.[3] We have used direct enumeration algorithms to 
list all molecules that are possible up to a certain size following 
simple rules of chemical stability and synthetic feasibility, result-
ing in large databases such as GDB17 containing 166.4 billion 
possible molecules of up to 17 non-hydrogen atoms,[4,5] GDB4c 
containing 916,130 ring systems (hydrocarbons without acyclic 
bonds) with up to four saturated or aromatic rings,[6] as well as 
FDB17[7] and GDBMedChem,[8] which are subsets of GDB17 
limited to molecules following fragment-likeness respectively 
medicinal chemistry criteria. The vast majority of molecules in 
GDB databases are yet unknown and therefore represent oppor-
tunities for discovery.

Assembling the GDB databases was based on simple enu-
meration algorithms. Recently, advancements in hardware and 
the availability of software libraries have made machine learning 
(ML) methods such as deep learning applicable as versatile tools 
to explore chemical space in the context of drug discovery.[9–11] 
In contrast to enumeration algorithms, ML approaches enable a 
computer to learn from data and then generate new data in an un-
supervised manner by exploiting hidden rules that are present in 
the training data but cannot be explicitly formulated and labelled. 
Here, we review our contributions to this rapidly growing field of 
inquiry, focusing on molecule generation as an alternative to GDB 
enumeration and on bioactivity prediction. We also illustrate how 
data visualization allows one to keep track and retain control of 
ML output.

2. Enumerating Chemical Space with Molecular 
Generative Models

2.1 GDB13 as a Benchmark
Molecular generative models trained with a set of molecules 

represented as SMILES strings acquire the capability of gener-
ating SMILES strings representing new molecules that are close 
analogs of the molecules in the training set. Various neural net-
work architectures have been shown to possess this capability, 
including recurrent neural networks (RNNs),[12–14] variational 
auto-encoders (VAE)[15–17] and generative adversarial networks 
(GAN).[18,19] Other approaches not using SMILES strings but 
the entire molecular graph have also been developed and showed 

Generative
Model

1M molecules (~0.1 %)

GDB-13
(975 M)

1) Train: 2) Sample:

2B SMILES
with repeats

Obtain

Not in
GDB-13

Invalid (0.1%)

In
GDB-13
95.3 %

4.6 %

83.0% of GDB-13
generated

Ideal model

2 B SMILES
with repeats

87.1% of GDB-13
generated on

average

3) Compare:

≤

Sample

Train

Mathematical
model

Fig. 1. Process of enumerating and benchmarking GDB-13 (975 million molecules without stereochemistry) using an RNN trained with SMILES 
strings. First, a sample of GDB13 is obtained and a generative model trained. After training the model is sampled with replacement 2 billion times 
and the resulting SMILES sorted between those that represent molecules in GDB13, those that do not, and those that are invalid. Lastly, the percent 
of GDB13 is compared with the upper bound obtained from an ideal model that evenly samples all molecules from GDB13.
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(structure-based VS).[31,32] In addition to VS, one must then also 
predict if the selected molecules might have additional off-target 
effects, a phenomenon known as polypharmacology and which is 
often undesirable.[33]

A variety of methods exist to predict polypharmacology by 
performing multiple comparisons with molecules of known bio-
activity such as those in the ChEMBL database.[34] In our own im-
plementation of such methods we reported the Polypharmacology 
Browser (PPB) as an online tool for off-target prediction based on 
ChEMBL data.[35] The defining feature of PPB was the combina-
tion of multiple molecular fingerprints for evaluation by a k-near-
est neighbor classifier (k-NN), a well-known approach for simi-
larity searches[36–38] which, however, had not been implemented 
for target prediction online tools. We recently further improved 
PPB and released PPB2, which uses a subset of ChEMBL con-
taining molecules with high confidence activity datapoints against 
single protein targets.[39] In addition to k-NN classifiers, PPB2 
uses other ML methods to improve predictions, considering na-
ive Bayes classification as well as deep neural networks (DNN), 
which allows a direct performance comparison between these dif-
ferent methods. We find that combining k-NN with naive Bayes 
classification using the ECFP4 fingerprint[40] gives the highest 
target prediction performance across a broad range of targets, in 
particular in terms of precision. By contrast a k-NN classifier with 
ECFP4 performs best in terms of recall, while a DNN trained with 
ECFP4 performs well but not best across all methods (Fig. 3a). It 
should be noted that different ML methods have different num-
bers of parameters and hyper-parameters to be fitted and therefore 
different requirements for the size of training sets. It’s known that 
the performance of classical machine learning methods improves 
with the increasing size of data and plateaus at some point, while 
the performance of deep learning models keeps improving steadi-
ly. In the presented target prediction study, the performance of the 
DNN model could have been affected due to the relatively small 
size of the training set. 

We have used PPB2 to identify the target of a triazine de-
signed as kinase inhibitor and identified as a nanomolar cytotox-
ic compound, but which turned out to be inactive on kinases by 
whole kinome profiling. PPB2 predicted that this triazine might 
in fact inhibit the enzyme LPAAT-β (lysophosphatidic acid acyl 
transferase β), a prediction which was later verified experimen-
tally. [41] The correct prediction was based on a combination of a 
k-NN classifier with the Xfp pharmacophore fingerprint[42] and a 
naive Bayes model based on ECFP4[40] (Fig. 3b,c). These studies 
illustrate that DNN, despite being computationally more complex, 

three hydrogen bond donor and acceptor atoms.[27] For instance, 
the complete fragment subset of GDB17 contains 4.5 billion 
fragment-like molecules covering a broad range of heterocyclic, 
carbocyclic, aromatic and heteroaromatic compounds, which is 
much larger and more diverse than the approximately 100,000 
fragments that can be collected from databases of known mole-
cules and mostly comprise aromatic molecules.[7]

The long short-term memory generative neural network archi-
tecture (LSTM) is a type of RNN capable of processing sequential 
data and thus generating analogs of specific subclasses of bioac-
tive compounds based on SMILES. To achieve this goal, one first 
trains the LSTM with SMILES from a drug-like database such as 
ChEMBL,[23] and then performs transfer learning with a specific 
subset, typically a family of inhibitors of a given enzyme or re-
ceptor.[12,13,22,28,29] In collaboration with the Novartis Institute of 
Biomedical Research in Basel, we recently investigated the effect 
of training such LSTMs with fragments from FDB17 and from 
other databases rather than with the entire ChEMBL database on 
the outcome of transfer learning.[30] To our surprise, we found 
that LSTMs trained with as little as 40,000 fragments, comprising 
fragment-like[27] molecules up to 17 atoms collected from various 
online catalogs, can generate new drug analogs similarly or better 
than LSTMs trained with ChEMBL itself, even when generating 
analogs of complex natural products such as macrocycles (Fig. 2). 
The best results were, however, not obtained with FDB17 but with 
commercially available fragments as training set. Strikingly, mol-
ecules generated after training with commercial fragments had a 
better synthetic accessibility and a higher predicted bioactivity 
than molecules generated after training with FDB17 fragments. 
Interestingly, we found that fragment-based LSTMs can generate 
a large number of close analogs of any drug irrespective of the 
set of fragments used from primary training. Furthermore, frag-
ment-based LSTMs generate known analogs documented to be 
active, illustrating the validity of the approach.

3. Deep Neural Networks for Target Prediction
Enumerating chemical space exhaustively as in GDB or by 

sampling as with generative neural networks opens unlimited 
possibilities for innovation. To select molecules for synthesis and 
testing from this large diversity, one must however first perform 
a virtual screening (VS) step. VS attempts to predict which mol-
ecules have the highest probability to display a given biological 
activity based on a scoring function, which is often the similarity 
to a reference active molecule (ligand-based VS) or a docking 
score to a given protein binding pocket whose structure is known 

a) b)

c)

Fig. 2. a) LSTM workflow for generation of drug analogs. b,c) generated analogs for Epothilone D and Roflumilast. For each generated analog (black) 
the Avalon fingerprint Tanimoto similarity (https://Sourceforge.Net/P/Avalontoolkit/Wiki/Home/) with respect to the parent drug (blue) is shown and 
structural changes are highlighted in red.
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ple, visualization of GDB13 as a MQN map[54] illustrates how the 
RNN generated database overlaps with the exhaustively enumer-
ated one and in which regions the RNN lacks in performance (Fig. 
4a/b).[25] In the context of generative models, interactive 3D-maps 
generated by WebMolCS play a key role in enabling a rapid in-
spection of the generated drug analogs to appreciate the types of 
structures generated (Fig. 4c).[30] Furthermore, in the context of 
our target prediction tool PPB2, a 3D visualization of target pre-
diction using WebMolCS illustrates how k-NN predictions based 
on a pharmacophore fingerprint Xfp[42] were able to correctly pre-
dict LPAAT-β as the correct target of a cytotoxic triazine. This 
visualization shows that the close chemical space vicinity was 
also populated with reference molecules pointing to A2aR and 
VEGFR-2 as other possible targets, against which the compound 
was, however, inactive (Fig. 4d).[41]

5. Conclusion and Outlook
As illustrated in this review, ML can usefully complement and 

extend more classical algorithms for exploring chemical space by 
helping in generating molecules and predicting their bioactivity. 
Multiple ongoing efforts are rapidly expanding the range of ques-
tions that can be asked about chemical space using ML. We an-
ticipate that implementing computer-assisted synthesis planning 
(CASP)[55,56] in the framework of our GDB project will soon allow 
us to focus our enumeration on readily synthesizable compounds 
and reach beyond our current limit of 17 atoms to discover new 
drugs with innovative chemical structures. Chemical space visual-

do not necessarily perform better for target prediction than more 
classical ML methods such as naive Bayes or k-NN classifiers. 

4. Visualizing Chemical Space
Due to its extremely large size, chemical space can only be 

explored with the help of powerful computers and methods such 
as ML. ML represents an unprecedented opportunity to approach 
such big data problems, but carries with itself the risk of losing 
track of the results due to the complexity of the computation and 
the large amount of data generated. We believe that data visualiza-
tion methods can play an essential role in ensuring that chemical 
space exploration produces interpretable results. 

Our main approach to visualize chemical space[43–45] con-
sists in generating interactive 2D or 3D maps featuring clouds 
of color-coded points, each point representing a molecule whose 
structure is made visible by pointing to it, and whose color encodes 
a particular property such as the similarity to a reference molecule 
or a molecular property such as size or polarity. The coordinates of 
each point on the map are calculated by applying dimensionality 
reduction to data points in a high-dimensional mathematical space 
defined by a molecular fingerprint. Our chemical space maps are 
available in the form of Java applets (Mapplets),[46,47] web ap-
plications (WebMolCS,[48,49] Faerun,[50,51] TMAP)[52] and virtual 
reality[53] applications enabling the visualization of up to several 
millions of datapoints simultaneously.

Our chemical space maps provide remarkable overviews and 
insights into the results of ML-based computations. For exam-

a)

c)

b)

Fig. 3. a) Target prediction performance in a 10-fold cross-validation study for eight different methods available in the polypharmacology browser 
PPB2. b) PPB2 entry page with a triazine later identified to act on LPAAT-β as a query compound. c) PPB2 target prediction result for the triazine us-
ing k-NN(Xfp) + NB(ECfp4) method. k-NN = nearest neighbor, NB = Naïve Bayes model. 
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ization tools will play a decisive role in this project by allowing us 
to keep track and learn from the results produced by ML. 
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