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Abstract: From simple clustering techniques to more sophisticated neural networks, the use of machine learning 
has become a valuable tool in many fields of chemistry in the past decades. Here, we describe two different ways 
in which we explore the combination of machine learning (ML) and molecular dynamics (MD) simulations. One 
topic focuses on how the information in MD simulations can be encoded such that it can be used as input to train 
ML models for the quantitative understanding of molecular systems. The second topic addresses the utilization 
of machine learning to improve the set-up, interpretation, as well as accuracy of MD simulations.
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1. Introduction
Already before the advent of the current neural networks, ma-

chine-learning (ML) methods have been used in different areas of 
chemistry, most widely in cheminformatics.[1,2] In pharmaceutical 
industry, ML models are routinely being trained to predict binding 
affinities,[3–6] physicochemical properties of potential drug can-
didates (e.g. partition coefficients,[7,8] aqueous solubility[8–11]), or 
toxicological effects.[12–14] More recently, approaches to train ML 
models based on quantum-mechanical (QM) data have emerged 
to predict molecular atomization energies,[15,16] forces,[17,18] po-
tential energies[19–21] or properties of materials.[22] The use of ML 
methods in the area of classical molecular dynamics (MD) simu-
lations, on the other hand, is less explored. 

In MD simulations, the motion of particles in a system is cal-
culated with classical mechanics, i.e. Newton’s equations of mo-
tion are solved numerically. The physical interactions between the 
particles can thereby be described by methods based on quantum 
mechanics (QM), classically, or by using a mixture of both, i.e. 
QM/MM[23] (for reviews on the different approaches see e.g. refs. 
[24–27]). The model for describing the particle–particle interac-
tions determines both the accuracy of the simulations as well as the 
spatial and time scales that can be reached. In the following, we 
show how ML approaches can be used to either exploit the informa-
tion inherent in MD simulations for the prediction of physicochem-
ical properties, or to improve the accuracy of classical force fields.

2. Learning With Molecular Dynamics
The time evolution of a system in an MD simulation is record-

ed in the form of coordinate and energy trajectories. Historically, 
ensemble averages are calculated to compare different properties 
with experimental values for the purpose of either interpreting 
experimental results or validating molecular simulations and 
force fields.[28,29] Such properties can be either thermodynamic 
(e.g. density, heat of vaporization, heat capacity, free energy of 
solvation), dynamic (e.g. self-diffusion coefficient, viscosity), 
or structural (e.g. radial distribution function, radius of gyration, 
NMR observables). However, by averaging over the trajectories 
potentially valuable information on kinetics and the relative pop-
ulation of conformational states is discarded. In the past years, 
kinetic modeling, i.e. Markov state modeling[30–33] has emerged 
as an approach to harness the time information stored in MD 
trajectories. Furthermore, the information from separate simula-
tions can be combined with this technique. Briefly, to construct a 
Markov state model (MSM), the snapshots in the trajectories are 
clustered first structurally into microstates (discretization step), 
and subsequently the microstates are clustered kinetically into 
so-called metastable sets. MSMs have been used to gain insights 
into the conformational changes of a wide variety of biological 
systems.[33–39] In order to obtain converged kinetic models, the 
total simulation time is, however, typically in the range of mi-
croseconds or even milliseconds. Different ML approaches have 
been developed in the past few years to assist with kinetic mod-
eling. For example, deep neural networks have been proposed as 
alternative to the commonly used principal component analysis 
(PCA) and time-lagged independent component analysis (TICA) 
to reduce the feature space and identify optimal collective vari-
ables for the building of MSMs.[40–42] Alternatively, McGibbon 
and Pande have developed an algorithm that learns the optimal 
geometric distance metric to classify structures based on kinetic 
proximity.[43] Recently, Noé and co-workers proposed the concept 
of Boltzmann generators to sample equilibrium states of complex 
systems employing deep learning.[44]

The time information in MD trajectories can also be exploited 
on a much shorter time scale using ML. For this, we developed 
the concept of MD fingerprints (MDFPs),[45] which encode MD 
trajectories into a ‘ML readable’ format. MDFPs are built as fol-
lows. The distributions of different terms extracted from short MD 
simulations (e.g. energetic terms, the solvent-accessible surface 
area, etc.) are described by statistical moments such as the av-
erage, variance, and skewness (or simpler the average, standard 
deviation, and median), and stored in a floating-point vector (Fig. 
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solubility. Furthermore, we plan to extend ligand-based MDFPs 
with terms from protein–ligand simulations to predict activity/
affinity for target proteins.

3. Learning for Molecular Dynamics
In classical MD simulations, the physical interactions between 

atoms are described with an empirical force field that consists of 
different bonded (i.e. bond stretching, bond-angle bending, and di-
hedral-angle torsion) and non-bonded (van der Waals and electro-
static) energy terms (for a review see e.g. ref. [26]). This involves 
a large number of parameters for each molecule, which are fitted 
to quantum-mechanical (QM) or available experimental data. The 
neglect of electronic degrees of freedom and the constraining of 
high frequency modes (e.g. C–H vibration) reduce the computa-
tional cost of the calculations dramatically such that much larger 
spatial scales and longer time scales can be reached. This comes, 
however, at the cost of accuracy and transferability. There is thus 
a need for more accurate and general force fields. In this context, 
ML approaches can be applied in several ways. ML models can be 
trained to learn the potential-energy surface such that they replace 
the force field entirely (see e.g. refs. [49,50]). A major challenge 
for this approach is the generation of a diverse enough training set 
in terms of chemical and conformational space.[51] Furthermore, 
computing MD trajectories with ML-based potentials is slower 
than with a classical force field (but faster than the QM calcula-
tions which were used as reference).

A different use case for ML is in force-field development, 
i.e. the aim is to improve the accuracy of force fields instead of 
replacing them. We have recently developed an ML approach 
to predict partial charges of organic molecules.[52] As reference 
partial charges extracted from density-functional theory (DFT) 
calculations including implicit solvent (with different dielectric 
constants) were used. The input features depend solely on the 
2D topology of a molecule represented by an atom-centered at-
om-pairs (AP) fingerprint,[53] thus the learned partial charges are 
conformation independent and averaged over similar substruc-
tures in different molecules. The latter aspect should improve the 
transferability. The workflow for training of the ML models is 
shown schematically in Fig. 3. Once the ML models are trained, 
the generation of the ML-based partial charges of a new molecule 
is extremely fast and scales linearly with the number of atoms in 
the molecule. An individual QM calculation per new molecule as 
typically done with the current force fields is no longer required. 
The usability of ML models relies heavily on the training set. For 
the partial charges, a large training set of more than 130’000 lead-
like molecules was compiled, which represent the substructures 
present in the lead-like parts of the public databases ChEMBL[54] 
and ZINC.[55,56] We chose lead-like compounds because these 
are large enough to contain multiple functional groups but small 

1). The variance contains thereby some entropic information. The 
MDFPs of different molecules can then be used as input features 
to train an ML model against experimental data. The MDFP-ML 
approach was tested on solvation free energies (∆G

solv
) of small 

organic molecules in solvents with different polarities: water, oc-
tanol, hexadecane, and cyclohexane. We could show that a single 
fingerprint based on simulations in water together with simple 
counts from the 2D topology of the molecule (i.e. number of 
heavy atoms, number of rotatable bonds, number of N, O, S, and 
halogen atoms) can be used to predict ∆G

solv
 in all four solvents. 

The prediction accuracy was thereby comparable to more rigorous 
MD-based methods but at a fraction of the computational cost.[45]

From solvation free energies, partition (or distribution) coeffi-
cients between two solvents S1 and S2 can be calculated straight-
forwardly,

log𝑃𝑃/ = ∆ ∆

 () (1)(1)

where R is the gas constant and T the absolute temperature. Thus, 
from ML models trained for the individual solvents, partition 
coefficients in all pairs of solvents can be calculated. Again, we 
found that the MDFP-ML approach performed similarly to the 
MD-based methods for predicting partition coefficients in octanol/
water, hexadecane/water, and cyclohexane/water. Furthermore, 
when applied retrospectively to the molecules in the SAMPL5 
blind challenge for cyclohexane/water distribution coefficients,[46] 
the MDFP-ML approach outperformed the more rigorous meth-
ods (Fig. 2). Recently, we participated in the SAMPL6 blind chal-
lenge[47] to predict octanol/water partition coefficients logP

oct/wat
 of 

a small set of molecules, resulting in a top 10 ranking.[48] There 
is significantly more logP

oct/wat
 data available than ∆G

solv
 data for 

octanol and water (104 range versus 102 range), because logP
oct/wat 

is routinely measured in medicinal chemistry as an indicator 
for the aqueous solubility and passive membrane permeability 
of a compound. We compared ML models with MDFPs as in-
put trained against experimental ∆G

solv
 values with those trained 

against experimental logP
oct/wat

. The results indicated that the for-
mer are more robust (i.e. better accuracy with smaller training 
sets) while the latter profit from the large amount of experimental 
logP

oct/wat
 values available.

The concept of MDFPs is very general and versatile. Depending 
on the property to be learned, different types of simulations (e.g. 
solute in solvent, pure liquids, crystals) can be performed (and 
combined), and different terms can be extracted to construct 
the fingerprints. In the future, we want to explore the use of the 
MDFP-ML approach for the prediction of other physicochemical 
properties such as melting point, vapour pressure, and aqueous 
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Fig. 1. Schematic representation of the construction process of the MDFP used in ref. [45]. From left to right: (i) The time series of properties (e.g. 
energetic terms, radius of gyration (rgyr) and solvent-accessible surface area (sasa)) are extracted from the MD simulations, (ii) the time series are 
converted into distributions, and (iii) the distributions are encoded in the MDFP as average, standard deviation (std) and median, and combined with 
simple counts from the 2D topological structure of the molecule (e.g. number of heavy atoms, number of rotatable bonds, number of oxygens, nitro-
gens, etc.). 
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compared to 1’000’000 for hydrogen). The database behind the 
ML-based partial charges can be continually expanded to further 
improve the coverage of the organic chemical space.

In a next step, we tested the combination of the ML-based 
partial charges with the van der Waals parameters of general force 
fields such as GAFF[57] or OPLS-AA.[58,59] These force fields typ-
ically use partial charges derived from individual QM calcula-
tions, which is relatively computationally expensive and limits 
transferability among similar substructures in different mole-

enough for QM calculations in a reasonably large bases set. The 
best performance was obtained using an AP fingerprint with a 
maximum bond length of four, i.e. atom pairs up to four bonds 
apart are recorded in the fingerprint. The highest accuracy was 
obtained for hydrogen and fluorine, for which all data points were 
within an absolute error of 0.05 e. On the other hand, the lowest 
accuracy was found for phosphorus (79% of the data points within 
an absolute error of 0.05 e), which is likely due to the relative-
ly small number of data points in the training set (around 1’000 
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Fig. 2. Comparison of computed and experimental cyclohexane/water distribution coefficients log Dcyc/wat of 40 SAMPL5 compounds. Predictions 
were generated for ∆Gsolv using a fusion model (average between a linear LASSO model and a GTB model) trained on MDFPs. From the predicted 
∆Gsolv values, logP values were calculated using Eqn. (1). For comparison, the logP and logD results from FEP[46] and COSMO-RS[68] calculations are 
shown. The linear regression lines are shown in blue. The black dashed lines represent y = x and an interval ±1 log unit. Reprinted with permission 
from ref. [45]. Copyright 2017 American Chemical Society.
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cules. The results showed that (a) the ML-based partial charges 
performed similarly as the commonly used ones in these force 
fields, and that (b) the ML-based partial charges derived with an 
implicit solvent model with a dielectric permittivity of 4 resulted 
in the best reproduction of thermodynamic properties. Due to the 
speed of the generation and their accuracy, the ML-based partial 
charges can also be interesting as descriptors in cheminformat-
ics, e.g. for quantitative structure-activity relationship (QSAR) or 
quantitative structure-property relationship (QSPR) models.[60–62] 
Besides partial charges[52,63,64] it is also possible to learn multipole 
coefficients, which capture the dispersion interaction and can be 
directly connected to the C6 coefficients in the Lennard-Jones 
potential-energy function.[65–67]

4. Outlook
We have highlighted the methods developed in our group and 

others to exploit the combination of machine learning and molec-
ular dynamics for the application in property prediction as well 
as for the improvement of the analysis, accuracy and sampling ef-
ficiency of MD simulations. Such combined approaches have the 
potential to influence fundamentally the field of computational 
chemistry. The ongoing advances in the field of machine learning 
and the increase in computational power will continue to impact 
the existing approaches and create opportunities for new applica-
tions and developments.
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