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Nano-thin 2D Soft Materials -
Design Principles and Prospects
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Abstract: Established less than a decade ago, the fascinating field of two-dimensional (2D) soft materials is ad-
vancing continuously towards widespread recognition. After demonstrating the feasibility of obtaining nano-thin
supramolecular sheets and morphologically related tubular objects, considerable efforts are being undertaken to
explore the functional potential of soft nanosheets. Self-assembly is a major tool for the controlled formation of
nanometre-sized 2D objects. In this account, we share our current understanding of the structural requirements
to direct the self-assembly of water-soluble, negatively charged oligomers in 2D. The discussion covers some
promising areas of utilization such as the reporting of weak mechanical perturbations, the assembly of light-
harvesting antennae, the transfer of excitation energy and the polymerization of pre-organized assemblies. The
systems presented in this work illustrate the potential of 2D supramolecular materials as complementary systems
to their covalent counterparts.
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1. Introduction

Two-dimensional materials have received an enormous atten-
tion over the past decade.l'-31 The interest in such morphological-
ly defined matter stems from the theoretical considerations sup-
ported by vast experimental data acquired from the most eminent
member of 2D materials — graphene.[*! Preparation of organic na-
nometre-thin sheets remains among the most challenging aspects
in material and polymer sciences because it will provide access to
technological applications. Exciting opportunities for this type of
materials emerge in areas such as molecular separation, ultralight
and strong protective coats, electronics or medicine.

Comprehensive synthetic methodologies toward organic 2D
polymers have been developed in several research groups.!-6l
Nowadays, monomers for 2D polymerization have become com-
mercially available, which is a positive sign for establishing
multidisciplinary collaborations between research and industri-
al groups.!”] This and other ground-breaking contributions were
achieved by Schliiter and co-workers who inspired other research
groups to join the field.[8] The Schliiter group solved a number of
highly challenging problems on their way to bringing 2D poly-
mers from scientifically curious to technically valuable materi-
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als. In one of the most successful strategies, 2D polymerization
was realized in a crystalline phase, enabling covalent connection
of monomers within a plane.l” Reducing the thickness of sheets
to a few nanometres, i.e. going to a single layer, is realized by
an exfoliation procedure. However, the necessity of possessing a
crystalline material is — and probably will remain — a limiting fac-
tor in diversifying molecular scaffolds suitable for 2D polymers.
The example further highlights the importance of pre-ordering to
achieve the proper arrangement of monomers within 2D confined
materials. At this time, the possibility to prepare free-standing
organic nanosheets, in which the building elements are connect-
ed via noncovalent bonds, was barely described in the literature.
Facile access to these systems should lead to the benefits of using
them as stimuli-responsive and adaptable materials, as well as
other characteristics shared by supramolecular polymers.[10l

Overall, 2D soft materials have been largely overshadowed
by their fibrillar counterparts, similar to the situation established
between 1D and 2D polymers a decade ago. While working on
DNA-inspired materials, our group contributed to the conceptual
understanding of some basic principles enabling the preparation
of 2D soft materials, i.e. 2D supramolecular polymers. Here, we
describe the major steps undertaken in our laboratories during
recent years.

2. Free-standing 2D Supramolecular Materials

Our original efforts were directed at defining the necessary
structural requirements to escape the one-dimensional supramolec-
ular polymerization by extending the self-assembly to the 2D space.
Theoretically, this change can be implemented by using a monomer
which forms more than two directional non-covalent bonds, similar
to the approach for covalent 2D polymerization. Oligomeric units
represent ideal substrates for this purpose due to their multivalency.
After formation of 2D assemblies, however, their further integration
into multilayer aggregates must be restricted. By working in aque-
ous environment, the latter restriction can be efficiently realized by
exploiting the strong repulsive forces between charged groups, e.g.
phosphates located at the surfaces of the formed sheets. To this end,
our group has engaged in the preparation of various sequence-spe-
cific and monodisperse oligophosphodiesters. Such oligomers are
readily accessible by automated solid phase synthesis using phos-
phoramidite chemistry.['!] Originally developed for the synthesis of
nucleic acids, this chemistry perfectly suits our needs for prepara-
tion of oligomers like the ones shown in Fig. 1.

Fig. 1. Structures of molecular

The first oligomer shown to form 2D systems was trimer 1
composed of a 1,6-bis-substituted pyrene, in which the units are
linked by phosphodiester bonds.l'?! The self-assembly of 1 occurs
via strong stacking and hydrophobic interactions in aqueous solu-
tion and leads to 2 nm thin sheets, as proved by AFM and TEM
analysis (Fig. 2A). Insight into the molecular packing of pyrene
units within 2D sheets was obtained from UV-vis and fluorescence
spectroscopy. J- and H-bands were observed for two electronic
pyrene transitions (SO—S1 and SO—S2), which can be correlat-
ed with the relative orientation of the calculated transition dipole
moments of pyrenes within the aggregates. In addition, the inten-
sity of pyrene excimer emission decreases upon self-assembly
into 2D supramolecular polymers, suggesting considerable steric
constraints within stacked pyrenes. Overall, these data support a
model of ladder-type folded trimers of 1 that self-assemble into a
nanosheet. The use of a controlled assembly protocol allowed the
preparation of free-floating sheets with lateral dimensions exceed-
ing a few tens of micrometres while retaining a constant thickness
of 2 nm. Such large free-standing sheets were obtained upon slow
cooling of 1 from high temperatures to ambient conditions.[!3]
Apart from the cooling rate, also proper buffering conditions and
the controlling of the ionic strength were among the major varia-
bles ensuring stacking in 2D. The morphological differences ob-
served in the assembly of isomeric pyrenes incorporated in similar
oligomers hint at the molecular folding pattern of the oligomeric
construction units as a major factor for directing the self-assembly
in 2D. Thus, an oligomer 2 consisting of 2,7-bisalkynyl substituted
pyrenes follows a similar assembly pathway leading to 2D sheets
as the major product.l' At the same time, oligomer 2 can also
grow into nanotubes (see below). In contrast, oligomer 3, which is
based on a 1,8-bisalkynyl substituted pyrene and a 3,6-bisalkynyl
phenanthrene self-assembles in 1D supramolecular fibres.[5]

The research on monodisperse oligomers was further extend-
ed to other systems. Thus, the number of pyrenes within an ol-
igomer chain was increased from three to seven. The heptamer
4 behaved similarly, yielding 2D supramolecular polymers. An
important step toward enhancing the functional potential of 2D
supramolecular polymers resides in the preparation of chimeric
oligomers. To this end, a series of oligomers containing a nucleo-
base conjugated to a heptamer was successfully tested for 2D su-
pramolecular polymerization.['®l This observation opens the door
to the preparation of water-soluble planar platforms with a high
density of small molecules on its surface. However, increasing the

o s §
building blocks and illustrative /,"{ A 0\, al
representation of the correspond- /fJ Y s /
ing oligomers. Oligomers were e = 7 “‘[f“ &

. . - \-?L\ 7 *__( R )_(
prepared via solid-phase synthe- LI 7 (@ g //‘_}_y
sis. I;j ( i) )=
& / i /_/
([ w 5d #
G e - n o - % W W
v L o v o v -“ e L L
1 2 3 5
‘_‘\u _\'v 2 'v'._. ' . ..U'_.‘-‘ &
4 4 i+
ot f s
& // |i I building block
7 { e | N
=( e (1 oLl
.y (?:_{k__// ) \r :S L_/I“V “"’J \_j\, 2 @ phosphodiester linker
/_% y: ~ ] /H OH
_%D ,-./ I D/[ EL,D\IF':/O?,
4d 2. wofeee o
HU u'._. 'u,- .”\U. w :
6 7 8



470

CHIMIA 2019, 73, No. 6

DIMENSIONALITY IN CHEMISTRY

~100 = 300 nm

collapse

Fig. 2. (A) lllustration of the self-assembly of 1 into 2D supramolecular polymers and a representative AFM image nanosheets adsorbed on mica
(adapted from ref. [13]). (B) AFM visualization of self-assembled 2 (adapted from ref. [14]). AFM images reveal formation of sheets, as well as nano-
tubes. Reprinted with permission from the corresponding references (copyrights Wiley, RSC and ACS).

number of nucleobases along the oligomer chain led to the forma-
tion of 1D supramolecular polymers, indicating a structural lim-
itation to the approach of constructing 2D functional platforms.

Chirality in soluble 2D supramolecular polymers remains an
almost entirely unexplored area. Some recent results highlight
the possibilities to get optically active sheets either by integrat-
ing chiral units within the assembled polymers or via applying
subtle mechanical perturbations (internal flows). In the former
case, the activity was manifested by emerging CD signals in the
area of pyrene absorption.[10l In the latter case, vortexing of the
solution led to the emergence of a strong chiroptical readout.!7]
This method can be used for the detection or visualization of
internal flows.

3. 2D Motifs in Tubular Systems

Often, the assignment of dimensionality in materials is rather
arbitrary. For example, tubular objects can be regarded as quasi-
one-dimensional at the microscopic level. However, many proper-
ties at the nanoscale will be more related to 2D materials, especially
when the walls of a tube consist of organic molecules. In one of the
reports, we observed the divergence of self-assembly pathways for
2 in supramolecular sheets and tubes.!'4! For the surface-collapsed
tubes, AFM analysis revealed the thickness of 4.5 nm, which cor-
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relates with two layers of stacked pyrenes (see Fig. 2B). Owing
to the cooperative mechanism of supramolecular polymerization,
these morphologically related shapes can co-exist due to the dy-
namic and reversible interactions during the growth of assemblies
in 2D. This example highlights our limited understanding of the
mechanistic aspects of 2D supramolecular polymerization. Further
research in the area is needed to advance the applications of 2D
materials, including light harvesting and energy transfer. To this
end, supramolecular copolymerization of oligomers 5 and 6 yields
exclusively tubular objects and allowed the creation of a light-har-
vesting system (Fig. 3).I'8! In stark contrast to covalent polymers,
successful integration of two oligomers in tubes becomes possible
due to the dynamic nature of supramolecular polymers and close
structural similarity of the oligomers. Once 5 and 6 are included
in tubes, 2,7-bis-substituted phenanthrenes can absorb light and
subsequently transfer energy over long distances to pyrenes doped
in the nanotubes. The high efficiency of these light-harvesting na-
notubes is based on properly ordered chromophore stacks. Again,
dynamic interactions between constituent molecular units facili-
tate correction of defects, if such are present, and can offer superior
properties over covalent materials.

Inspired by the elegantly manifested usefulness of anthra-
cenes for construction of 2D polymers, some of us explored the

Fig. 3. Light-harvesting nanotubes
prepared by co-polymerization

of 5 and 6 with illustrative micro-
scopic images (adapted from ref.
[18]). Reprinted with permission;
copyright Wiley.
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potential of oligomers containing this chromophore to undergo
supramolecular polymerization.!'”l Thus, dimer 7 consisting of
1,5-bis-substituted anthracenes self-assembles into nanotubes.
The morphology was confirmed by a set of spectroscopic and
microscopic experiments. Furthermore, photoinduced crosslink-
ing of anthracenes provided important insights into their internal
organization within the nanotubes. Most probably, the assembly
occurs via end-to-end stacking of folded dimers. This conclusion
is supported by the post-crosslinking AFM imaging, which con-
firmed the absence of long polymers in ethanol, in which solvent
oligomer 7 is soluble. The case underlines that substitution pattern
of crosslinking units, determining folding and assembly modes, is
vital for obtaining 2D covalent polymers. In the next chapter, we
will highlight successful cases of obtaining covalent 2D materials
starting from supramolecular polymers.

4. From 2D Supramolecular Polymers to 2D Covalent
Materials

To arrive at covalent 2D materials, we turned our attention
to DNA scaffolds which have been widely employed to create
nano-objects of various morphologies. Pioneered by Seeman et
al., chemists have greatly succeeded in the pursuit of creating
2D nano-architectures from DNA single strands.[20! In our work,
we designed a DNA-based 2D network that can be internally
crosslinked by covalent bonds.2!l The Y-shaped monomer con-
tains a benzene core, to which three identical, self-complementary
DNA single strands are attached at 1-, 3- and 5- positions, re-
spectively. For the later linkage formation, an 1,4-bis-substituted
anthracene unit is incorporated at the middle of each oligonu-
cleotide branch. When the monomers self-assemble into planar
2D networks with hexagonal repeat units, the duplex formation
will bring anthracene units together as face-to-face stacked pairs,
which can be dimerized by UV irradiation (Fig. 4). The formation
of 2D supramolecular polymers (2D-SP) was achieved by care-
ful annealing of monomers in an aqueous solution. AFM images
identified large, homogeneous sheets with randomly distributed
cracks and holes. The measured thickness of ~1 nm is in good
agreement with the height of a DNA duplex adsorbed on mica
which indicates the formation of a monolayer sheet. The solution
of nanosheets was exposed to UV light at 366 nm. The anthracene
absorption decreased over time and reached a final conversion of
83% into dimers after 12 hours. The resulting 2D polymer (2DP)
resembles its supramolecular precursor in shape and thickness,
though small holes are observed. Furthermore, an interesting sol-
vent-responsivity has been observed when transferring 2DP from
water to acetonitrile (Fig. 5).

In different work, entirely non-nucleosidic, anthracene-based
oligomers such as 8 can be used for the polymerization via pre-or-
ganized, supramolecular polymers.[22I In aqueous solution, the ol-

igomer self-assembles into tubular structures. Internal ordering of
anthracenes favours photo-induced dimer formation and conse-
quently leads to covalent tubes (Fig. 6).

Apart from organic materials, the negatively charged 2D su-
pramolecular polymers, e.g. 1, can be used as templates for the
growth of inorganic materials.[?3] We demonstrated that using wa-
ter-soluble 2D scaffolds opens the door to nanothin silicates. First,
a positively charged reagent, methyl[3-(trimethoxysilyl)propyl]
ammoniumchloride, is added to create nucleation sites on the na-
nosheet surface. Second, introduction of triethoxysilane, which is
easily hydrolysed in aqueous buffer at pH = 7, leads to the slow
covering of nanosheets with a silica shell (Fig. 7). The thickness
of the shell can be controlled by the amount of added silane.

5. Conclusions and Outlook

Two-dimensional soft matter is a fascinating topic of research,
holding exciting promises for future applications. Several impor-
tant milestones in this field, such as demonstration of oligomer
self-assembly in soft 2D materials and development of reliable
preparation methods, have already been achieved. Currently, the
major problems lying ahead include the optimization of the prepa-
ration protocols, extending the scope of suitable small molecules
or oligomers, and exploiting multicomponent assemblies as a
way to functional diversification. The latter type of 2D materi-
als is still elusive and the field of supramolecular polymerization
would greatly benefit from developments in this direction. With
further advances in the field, such systems can be used as integral
components of mimicking multifunctional biomaterials. Thus, it
was shown that inorganic nanoscale coatings, e.g. silicates, can
be grown on the surfaces of 2D soft materials and used for further
derivatization. Finally, soluble 2D supramolecular polymers can
be used as precursors for covalent polymerization, overcoming
some limitation of modern synthesis of 2D polymers.
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tri-valent oligonucleotide A (adapted from ref. [21]). Reprinted with permission; copyright Wiley.
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vents (top), and their proposed models (bottom, adapted from ref. [21]). Reprinted with permission; copyright Wiley.
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