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Abstract: Statistical learning algorithms are finding more and more applications in science and technology. 
Atomic-scale modeling is no exception, with machine learning becoming commonplace as a tool to predict en-
ergy, forces and properties of molecules and condensed-phase systems. This short review summarizes recent 
progress in the field, focusing in particular on the problem of representing an atomic configuration in a mathemati-
cally robust and computationally efficient way. We also discuss some of the regression algorithms that have been 
used to construct surrogate models of atomic-scale properties. We then show examples of how the optimization 
of the machine-learning models can both incorporate and reveal insights onto the physical phenomena that 
underlie structure–property relations.
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1. Introduction
The steady increase in computing power in the last decades, 

together with the improvements in accuracy and efficiency of 
electronic structure methods and empirical force fields (FFs), 
have given atomistic modeling a central role in the investigation 
of molecular and condensed-phase systems, and underpinned 
the rise of computational material design. Some recent achieve-
ments include the study of synaptic transmission mechanisms,[1] 
water splitting with photo-electrical cells,[2] realistic metal de-
formations and plasticity[3] and nucleation with billions of at-
oms.[4] Nevertheless the inherent scaling of ab initio methods 
limits their applicability, preventing systems with more than a 
few thousand atoms from being studied, while the development 
of accurate and transferable reactive, multi-component empiri-

cal FFs remains a major challenge. The last decade has seen the 
emergence of machine learning (ML) methods in the field of 
atomic-scale modeling to automate time consuming analyses[5–7] 
(unsupervised learning) or to reduce the cost of predicting quan-
tities associated with atomic systems[8–11] (supervised learning). 
Unsupervised techniques aim at unravelling patterns in data- 
bases, which in the context of atomistic modeling can correspond 
to identifying recurring motifs within structures,[12,13] as well 
as groups of ‘similar’ structures in datasets of molecules and 
molecular solids[14,15] or molecular dynamics trajectories. [16–18] 
Given a set of atomic structures {𝒜𝒜𝓃𝓃 } Symb a

{𝔂𝔂𝓃𝓃 } Symb b

F :𝒜𝒜 → 𝔂𝔂 Symb c
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𝐺𝐺 Symb g
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Ĝ

G

|A�
|A�Ĝ
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electronic structure theory, supervised ML methods can be used 
to learn a surrogate model 
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 to predict those prop-
erties. In this way, ML makes it possible to bypass solving 
Schrödinger’s equation, and to obtain inexpensive and accurate 
predictions of the formation energy of atomic structures,[19,20] 
the chemical shieldings in molecular materials,[21] the electron 
density of small molecules,[22,23] the electron transfer coupling 
between dimers[24] etc. One of the most promising applications 
for these algorithms is to provide frameworks to systematically 
build accurate interatomic potentials[25–27] for a slightly higher 
running cost than traditional FFs.

In this review, we briefly summarize some of the approaches 
that have been used to model atomic scale properties with ML 
techniques. We begin by providing a detailed discussion of the 
problem of obtaining a representation of atomic configurations, 
i.e. how the Cartesian coordinates of the atoms can be trans-
formed to obtain a mathematical description of the structure 
that is concise, and that incorporates the fundamental physical 
symmetry. In doing so, we will show how most of the existing 
representations can be seen as different views of a symmetrized 
atomic density. We then give a brief overview of the regression 
techniques that have been used in the context of atomic-scale 
modeling, focusing in particular on Gaussian process regres-
sion, and discussing some of the aspects that are particularly 
relevant in the learning of atomic-scale properties. Finally we 
show how representations and regression models can be im-
proved by incorporating more prior knowledge about the spe-
cific problem, using recent applications to highlight some of 
their key features.
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desired symmetries.
Several authors have proposed to represent structures

in terms of so-called fingerprints by concatenating features
associated with an atomic structure, e.g. elemental prop-
erties, atomic connectivity, electronic structure attributes,
stoichiometry, etc.9,36–38 to build models for complex prop-
erties such as melting temperature, dielectric constant and
band gap energy. While in principle any feature can be
introduced into a ML model, electronic structure theory
shows that any ground-state property of a structure A is
a smooth function of the set of N atomic coordinates {ri}
and chemical species {αi}.39 These considerations suggest
that representations of the atomic structure based only on
this core information provide a physically-motivated basis
to regress any property y(A) that could be computed by
solving the Schrödinger equation for the structure.

While a representation in terms of {ri,αi} provides a
complete description of a structure A, it does not incorpo-
rate the most basic physical symmetries that could follow a
property, such as the invariance to the labelling of identical
nuclei, or rigid translations and rotations of the reference
frame. Many schemes have been proposed in recent years
to translate the essential inputs of a quantum calculation
code into a representation that incorporates these symme-
tries, and that can then be used in combination with most
regression algorithms to learn physical properties in a data-
efficient manner. Some start from internal coordinates
of a molecule, such as the distances and angles between
atoms,19,27,40–45 that are rotationally and translationally in-
variant while others begin with an atomic density44,46–51

which is invariant under the permutation of the atom in-
dices. As we illustrate below, many of these representa-
tions have been shown to be essentially equivalent, as they
correspond to special cases of a general framework gener-
ating invariant and covariant representations from atomic
densities.47,52,53 In the following text, we focus on local in-
variant representations but this framework is also a power-
ful tool to develop local covariant representations,52,54,55 as
well as representations that capture non-local, global fea-
tures of a given structure.14,56

We emphasize the generality and abstract nature of this
construction by associating with each structure a vector
|A�. Different representations can be thought of as re-
sulting from particular choices of the basis that is used to
provide a concrete protocol to evaluate |A�, much like the
wavefunction can be expressed equally well in real space,
in plane waves, or in one of the many localized basis sets
that have been used in quantum chemistry. We choose a
real-space basis as the starting point, and associate with
|A� a set of element-resolved smooth atomic densities

�αr|A� =
∑

i∈A,α

g (r− ri) . (1)

The sum extends over all atoms of type α within the
structure, and g is a smooth density function (a function
peaked at zero with central symmetry that decreases to
zero smoothly). The use of a smooth density function in-
stead of a Dirac distribution to represent the atomic coor-

dinates ensures that the resulting representation is smooth
with respect to atomic displacements. Provided that the
functions g are sufficiently peaked, this representation de-
termines fully the position of all the atoms, and is clearly
independent on the order in which atoms are considered.

It is however not invariant with respect to rotations and
translations. These additional symmetries can be incorpo-
rated through Haar integration57 of the atomic density, i.e.
averaging over the corresponding group

|A�Ĝ =

∫

G

Ĝ |A� dĜ, (2)

where Ĝ is an element of the group G. This averaging
can be performed formally over the Dirac ket, but is more
conveniently carried out by choosing a convenient basis in
which to write explicitly the feature vector. Furthermore,
one should keep in mind that Haar integration – just as any
averaging procedure – reduces the descriptive power of the
representation. In other terms, structures that are distinct
in terms of |A� might be indistinguishable when repre-
sented in terms of |A�Ĝ. For example a Haar integration of
�αr|A� over the translations t̂ yields a constant scalar that
counts the number of atoms of type α that are present in the
structure.58 In order to avoid loss of resolving power, one
can perform the average over tensor products of the atom
density, i.e. evaluate the density at two different points and
average over the simultaneous application of the symmetry
operation to both points. To be concrete, let us derive ex-
plicitly this representation for a Gaussian smearing func-
tion Nσ2

(
r
)
= exp

(−r2/2σ2
)
. To retain structural in-

formation, we compute a translationally-symmetrized rep-
resentation based on a two-point evaluation of the atom
density:
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where rij = rj − ri and r − r� has been replaced with
r. Note that translational averaging reduced by three the
number of independent variables, and that the symmetrized
density takes the structure of a many-body expansion of
the potential energy truncated up to the pair contributions.
In other words a symmetrized pair-density representation
of an atomic structure can be decomposed into a sum of
representations centered on each of the atoms. Moreover
while one could consider all the pairs in the representa-
tion, the nearsightedness principle of electronic matter,59
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frame. Many schemes have been proposed in recent years
to translate the essential inputs of a quantum calculation
code into a representation that incorporates these symme-
tries, and that can then be used in combination with most
regression algorithms to learn physical properties in a data-
efficient manner. Some start from internal coordinates
of a molecule, such as the distances and angles between
atoms,19,27,40–45 that are rotationally and translationally in-
variant while others begin with an atomic density44,46–51

which is invariant under the permutation of the atom in-
dices. As we illustrate below, many of these representa-
tions have been shown to be essentially equivalent, as they
correspond to special cases of a general framework gener-
ating invariant and covariant representations from atomic
densities.47,52,53 In the following text, we focus on local in-
variant representations but this framework is also a power-
ful tool to develop local covariant representations,52,54,55 as
well as representations that capture non-local, global fea-
tures of a given structure.14,56

We emphasize the generality and abstract nature of this
construction by associating with each structure a vector
|A�. Different representations can be thought of as re-
sulting from particular choices of the basis that is used to
provide a concrete protocol to evaluate |A�, much like the
wavefunction can be expressed equally well in real space,
in plane waves, or in one of the many localized basis sets
that have been used in quantum chemistry. We choose a
real-space basis as the starting point, and associate with
|A� a set of element-resolved smooth atomic densities

�αr|A� =
∑

i∈A,α

g (r− ri) . (1)

The sum extends over all atoms of type α within the
structure, and g is a smooth density function (a function
peaked at zero with central symmetry that decreases to
zero smoothly). The use of a smooth density function in-
stead of a Dirac distribution to represent the atomic coor-

dinates ensures that the resulting representation is smooth
with respect to atomic displacements. Provided that the
functions g are sufficiently peaked, this representation de-
termines fully the position of all the atoms, and is clearly
independent on the order in which atoms are considered.

It is however not invariant with respect to rotations and
translations. These additional symmetries can be incorpo-
rated through Haar integration57 of the atomic density, i.e.
averaging over the corresponding group

|A�Ĝ =

∫

G

Ĝ |A� dĜ, (2)

where Ĝ is an element of the group G. This averaging
can be performed formally over the Dirac ket, but is more
conveniently carried out by choosing a convenient basis in
which to write explicitly the feature vector. Furthermore,
one should keep in mind that Haar integration – just as any
averaging procedure – reduces the descriptive power of the
representation. In other terms, structures that are distinct
in terms of |A� might be indistinguishable when repre-
sented in terms of |A�Ĝ. For example a Haar integration of
�αr|A� over the translations t̂ yields a constant scalar that
counts the number of atoms of type α that are present in the
structure.58 In order to avoid loss of resolving power, one
can perform the average over tensor products of the atom
density, i.e. evaluate the density at two different points and
average over the simultaneous application of the symmetry
operation to both points. To be concrete, let us derive ex-
plicitly this representation for a Gaussian smearing func-
tion Nσ2

(
r
)
= exp

(−r2/2σ2
)
. To retain structural in-

formation, we compute a translationally-symmetrized rep-
resentation based on a two-point evaluation of the atom
density:
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j∈A,α′
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dt̂
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(
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)
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)

⇒ �αα�r|A(2)�t̂ =
∑

i∈A,α
j∈A,α′

N2σ2

(
r− rij

)
, (3)

where rij = rj − ri and r − r� has been replaced with
r. Note that translational averaging reduced by three the
number of independent variables, and that the symmetrized
density takes the structure of a many-body expansion of
the potential energy truncated up to the pair contributions.
In other words a symmetrized pair-density representation
of an atomic structure can be decomposed into a sum of
representations centered on each of the atoms. Moreover
while one could consider all the pairs in the representa-
tion, the nearsightedness principle of electronic matter,59

(3)

where r
ij
 = r

j
 – r

i
 and r – r' has been replaced with r. Note that 
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nested sums over the atomic neighborhood which might not be 
computationally favorable. As illustrated in Fig. 1 for the case of 
ν = 2, increasing the order ν of the tensor product in the integral 
over the continuous rotation group similarly increases the body 

order of the structural correlations described by 
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 as a sum 

over neighbors, this procedure would increase the order of the 
sum over neighboring atoms. One can, however, also proceed by 
expanding 
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 in an appropriate basis, e.g. a combination of ra-
dial functions R

n
(r) and spherical harmonics

3

which underlies most linear-scaling electronic structure
methods,60–63 and the clear computational advantage de-
riving from restricting the range of atomic pairs that need
to be included in the sum, motivates the limitation of the
atomic neighborhood to a sphere of radius rc centered on
each atom through a cutoff function fc(r) that is zero for
r > rc. To simplify notation, we then introduce an atom-
centered symmetrized density representation

�αr|Xi� =
∑

j∈Xi,α

N2σ2

(
r− rij

)
fc(rij), (4)

where Xi is an atomic environment centered on atom i
that includes all the neighbors within a sphere of radius
rc. The cutoff function should smoothly decay to zero to
avoid introducing a discontinuity with respect to atoms en-
tering/leaving the atomic neighborhood in the representa-
tion. Using this notation, one can write

�αα�r|A(2)�t̂ =
∑

i∈A,α′
�αr|Xi� . (5)

The environment-centered features |Xi� are not rota-
tionally invariant, and so one can proceed to the sym-
metrization over the rotation group. Using the z-y-z Euler
parametrization, one can compute
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where we note that the integration makes the orientation of
r irrelevant, and we write the feature vector as a function
of r = �r�. Some constant factors and the N2σ2

(
r + rij

)
term have been omitted because they do not contribute
to the representation since r, rij > 0 with σ relatively
small. Note also that we have introduced in the definition
of �αr|X (1)

i �R̂ an additional factor of r, so that
∫

R3

�X (1)
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j �R̂ dr =
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�X (1)
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(7)

This symmetrized density �αr|X (1)
i �R̂ is essentially a 2-

body correlation function resulting from a Gaussian kernel
density estimation (KDE). The body order naturally char-
acterizes the amount of information included in an invari-
ant density representation.

It is clear that this procedure is very general, and can
be applied to any tensor power of the density, both when
integrating over translations and when integrating over ro-
tations. Increasing the order µ of the product in the inte-
gration over t̂ leads to µ − 1 nested sums over the atomic
neighborhood which might not be computationally favor-
able. Increasing the order ν of the tensor product in the
integral over the continuous rotation group similarly in-
creases the body order of the structural correlations de-
scribed by |X (ν)

i �R̂. If one did so while writing explicitly
the environmental ket |Xi� as a sum over neighbors, this
procedure would increase the order of the sum over neigh-
boring atoms. One can however also proceed by expanding
|Xi� in an appropriate basis, e.g. a combination of radial
functions Rn(r) and spherical harmonics

�αnlm|Xi� =
∫

dr Rn(r)Y
m
l (r̂) �r|Xi� , (8)

in which case higher-order invariants can be written as
sums over the expansion coefficients,

�αnα�n�l|X (2)
i �R̂ =

1√
2l + 1

∑
m

(−1)m �α�n�lm|Xi�

�αnl −m|Xi� .
(9)

The flexibility of this framework allows links to be drawn
between several representations that might otherwise look
quite dissimilar. The type of smearing function used to
construct the atomic density, the basis onto which the
density is represented (real space grid, orthonormal ba-
sis set, etc.), can impact the effectiveness and the compu-
tational efficiency of the resulting implementation but do
not change the fundamental nature of the invariant repre-
sentation. For example, the choice of Gaussian smearing
and a basis of radial functions corresponds to the smooth
overlap of atomic positions (SOAP) framework,14,46 with
the power spectrum and the bispectrum corresponding to
rotational averages with ν = 2 and ν = 3 respec-
tively. The computation of these coefficients involves
the evaluation of several costly special functions.53 Even
if the cost of evaluating SOAP features can be reduced
greatly by the introduction of approximations and numeri-
cal workarounds,64 the use of both a smooth atom density
and a smooth basis set might seem redundant and costly.
This led Drautz 47 to use Dirac distributions in the repre-
sentation of the density, and obtain smoothness by truncat-
ing the basis set on which this density is expanded. The
resulting invariant representations correspond precisely to
the g → δ limit of the SOAP power spectrum, bispectrum
and higher-ν invariants, but can be expressed in terms of
simpler mathematical functions.

The expansion on a complete basis set of the atomic
density ensures the general applicability of a representa-
tion but it also increases its computational cost by probing
regions of the configurational space that are not relevant
for a given system. The symmetry functions40 framework
make it possible to use the knowledge of the system at hand
to carefully tailor a representation of the atomic environ-
ment. The resulting representation can be interpreted as a
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which underlies most linear-scaling electronic structure
methods,60–63 and the clear computational advantage de-
riving from restricting the range of atomic pairs that need
to be included in the sum, motivates the limitation of the
atomic neighborhood to a sphere of radius rc centered on
each atom through a cutoff function fc(r) that is zero for
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that includes all the neighbors within a sphere of radius
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avoid introducing a discontinuity with respect to atoms en-
tering/leaving the atomic neighborhood in the representa-
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where we note that the integration makes the orientation of
r irrelevant, and we write the feature vector as a function
of r = �r�. Some constant factors and the N2σ2
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term have been omitted because they do not contribute
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i �R̂ is essentially a 2-

body correlation function resulting from a Gaussian kernel
density estimation (KDE). The body order naturally char-
acterizes the amount of information included in an invari-
ant density representation.

It is clear that this procedure is very general, and can
be applied to any tensor power of the density, both when
integrating over translations and when integrating over ro-
tations. Increasing the order µ of the product in the inte-
gration over t̂ leads to µ − 1 nested sums over the atomic
neighborhood which might not be computationally favor-
able. Increasing the order ν of the tensor product in the
integral over the continuous rotation group similarly in-
creases the body order of the structural correlations de-
scribed by |X (ν)

i �R̂. If one did so while writing explicitly
the environmental ket |Xi� as a sum over neighbors, this
procedure would increase the order of the sum over neigh-
boring atoms. One can however also proceed by expanding
|Xi� in an appropriate basis, e.g. a combination of radial
functions Rn(r) and spherical harmonics
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The flexibility of this framework allows links to be drawn
between several representations that might otherwise look
quite dissimilar. The type of smearing function used to
construct the atomic density, the basis onto which the
density is represented (real space grid, orthonormal ba-
sis set, etc.), can impact the effectiveness and the compu-
tational efficiency of the resulting implementation but do
not change the fundamental nature of the invariant repre-
sentation. For example, the choice of Gaussian smearing
and a basis of radial functions corresponds to the smooth
overlap of atomic positions (SOAP) framework,14,46 with
the power spectrum and the bispectrum corresponding to
rotational averages with ν = 2 and ν = 3 respec-
tively. The computation of these coefficients involves
the evaluation of several costly special functions.53 Even
if the cost of evaluating SOAP features can be reduced
greatly by the introduction of approximations and numeri-
cal workarounds,64 the use of both a smooth atom density
and a smooth basis set might seem redundant and costly.
This led Drautz 47 to use Dirac distributions in the repre-
sentation of the density, and obtain smoothness by truncat-
ing the basis set on which this density is expanded. The
resulting invariant representations correspond precisely to
the g → δ limit of the SOAP power spectrum, bispectrum
and higher-ν invariants, but can be expressed in terms of
simpler mathematical functions.

The expansion on a complete basis set of the atomic
density ensures the general applicability of a representa-
tion but it also increases its computational cost by probing
regions of the configurational space that are not relevant
for a given system. The symmetry functions40 framework
make it possible to use the knowledge of the system at hand
to carefully tailor a representation of the atomic environ-
ment. The resulting representation can be interpreted as a
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FIG. 1. A graphical summary of the steps leading from a decorated atomic density to the 3-body invariant representation of ethanol in
real space |X (2)

i 〉R̂. (a) The geometry of a small molecule is mapped into a smooth atom density using a Gaussian smearing function.
The chemical composition represented by the elemental ket |α〉 is color coded: carbons are black, oxygen is red and hydrogens are grey.
(b) The symmetrization over the translational group of a two-point density results in the decomposition of the representation into a sum
of atom centered contributions where a finite cutoff has been applied (see Eq. (4)). (c) The symmetrization over the rotational group
with ν = 2 delivers the 3-body invariant representation. Some isocontours of 〈αr1βr2ω|X (2)〉R̂ /r1r2 associated with the central
carbon atom illustrate some of the real space features extracted with the atom density framework. Adapted from Ref. 58.

projection on these symmetry functions fixed in particular
regions of the configurational space with the δ-limit of the
(ν + 1)-body invariant ket,

�αG2|Xi� =
∫

dr G2(r) �αr|X (1)
i �R̂,g→δ , (10)

where �αr|X (1)
i �R̂,g→δ =

∑
j∈Xi,α

δ(r−rij)fc(rij) and
δ is the Dirac distribution. Other recently-introduced fea-
ture vectors for atomistic learning, such as the FCHL44

and the MBTR48 representations, use an adaptive basis
to smooth the δ-limit of the (ν + 1)-body invariant ket
|X (ν)

i �R̂, effectively constructing a kernel density estimate
of the invariant correlation function. These two representa-
tions differ by the choice of kernel functions and how they
encode the chemical information, with the FHCL features
using a kernel to encode the similarity between different
elements, similarly to what was done in Ref. 14.

The density based representation framework makes it
possible to rigorously formulate a hierarchy of invariant
representations and shows that several commonly used de-
scriptions of atomic structures and environments actually
contain a similar amount of information. This formal con-
nection is also reflected in several recent extensive empir-
ical benchmarks,65–67 that show that many of these rep-
resentations actually perform similarly in terms of model
accuracy, while the main difference between them is their
computational cost.

It is also worth mentioning that density-based invari-
ants can be generalized to yield feature vectors of the form∣∣X (ν)λµ

〉
R̂

that transform covariantly under rotations of
the reference frame as the spherical harmonics Y µ

λ ,53,54

providing a symmetry-adapted basis to learn properties
such as atomic forces, elastic moduli or dielectric response
tensors, which also rotate rigidly under SO (3) group oper-
ations. Using a generic atom-centered symmetry-adapted
representation has proven to be more effective68 than
frameworks that assume a rigid molecular frame to achieve
covariance of the predicted properties,69,70 and has made
it possible to learn an atom-centered decomposition of a
scalar field like the electron density.23,71 Although learn-
ing schemes based on covariant features or kernels55,72–74

could in principle be used to machine-learn directly the
inter-atomic forces rather than the underlying atomic po-
tential, enforcing energy conservation has proven difficult.
For this reason, most of the existing machine-learning in-
teratomic potentials are built to predict the potential, al-
though they can incorporate forces as an indirect learning
target.20,40,75–77

III. MACHINE LEARNING QUANTUM MECHANICS

ML algorithms for regression78 aim to construct a
model y = F (A) that can predict accurately the properties
of a structure. The internal parameters of the model are de-
termined by optimizing the accuracy of prediction over a
set of training structures, {Ai, yi}, and their accuracy with
respect to that reference can be improved systematically
by increasing the size of the training set.79 One of the early
applications of ML to the prediction of atomic-scale prop-
erties aimed at obtaining an accurate model of the potential
energy surface (PES), which is crucial to assess the stabil-
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to be included in the sum, motivates the limitation of the
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each atom through a cutoff function fc(r) that is zero for
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where Xi is an atomic environment centered on atom i
that includes all the neighbors within a sphere of radius
rc. The cutoff function should smoothly decay to zero to
avoid introducing a discontinuity with respect to atoms en-
tering/leaving the atomic neighborhood in the representa-
tion. Using this notation, one can write
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The environment-centered features |Xi� are not rota-
tionally invariant, and so one can proceed to the sym-
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where we note that the integration makes the orientation of
r irrelevant, and we write the feature vector as a function
of r = �r�. Some constant factors and the N2σ2

(
r + rij

)
term have been omitted because they do not contribute
to the representation since r, rij > 0 with σ relatively
small. Note also that we have introduced in the definition
of �αr|X (1)

i �R̂ an additional factor of r, so that
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This symmetrized density �αr|X (1)
i �R̂ is essentially a 2-

body correlation function resulting from a Gaussian kernel
density estimation (KDE). The body order naturally char-
acterizes the amount of information included in an invari-
ant density representation.

It is clear that this procedure is very general, and can
be applied to any tensor power of the density, both when
integrating over translations and when integrating over ro-
tations. Increasing the order µ of the product in the inte-
gration over t̂ leads to µ − 1 nested sums over the atomic
neighborhood which might not be computationally favor-
able. Increasing the order ν of the tensor product in the
integral over the continuous rotation group similarly in-
creases the body order of the structural correlations de-
scribed by |X (ν)

i �R̂. If one did so while writing explicitly
the environmental ket |Xi� as a sum over neighbors, this
procedure would increase the order of the sum over neigh-
boring atoms. One can however also proceed by expanding
|Xi� in an appropriate basis, e.g. a combination of radial
functions Rn(r) and spherical harmonics

�αnlm|Xi� =
∫

dr Rn(r)Y
m
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in which case higher-order invariants can be written as
sums over the expansion coefficients,
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tational efficiency of the resulting implementation but do
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the power spectrum and the bispectrum corresponding to
rotational averages with ν = 2 and ν = 3 respec-
tively. The computation of these coefficients involves
the evaluation of several costly special functions.53 Even
if the cost of evaluating SOAP features can be reduced
greatly by the introduction of approximations and numeri-
cal workarounds,64 the use of both a smooth atom density
and a smooth basis set might seem redundant and costly.
This led Drautz 47 to use Dirac distributions in the repre-
sentation of the density, and obtain smoothness by truncat-
ing the basis set on which this density is expanded. The
resulting invariant representations correspond precisely to
the g → δ limit of the SOAP power spectrum, bispectrum
and higher-ν invariants, but can be expressed in terms of
simpler mathematical functions.

The expansion on a complete basis set of the atomic
density ensures the general applicability of a representa-
tion but it also increases its computational cost by probing
regions of the configurational space that are not relevant
for a given system. The symmetry functions40 framework
make it possible to use the knowledge of the system at hand
to carefully tailor a representation of the atomic environ-
ment. The resulting representation can be interpreted as a
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where we note that the integration makes the orientation of
r irrelevant, and we write the feature vector as a function
of r = �r�. Some constant factors and the N2σ2
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term have been omitted because they do not contribute
to the representation since r, rij > 0 with σ relatively
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body correlation function resulting from a Gaussian kernel
density estimation (KDE). The body order naturally char-
acterizes the amount of information included in an invari-
ant density representation.

It is clear that this procedure is very general, and can
be applied to any tensor power of the density, both when
integrating over translations and when integrating over ro-
tations. Increasing the order µ of the product in the inte-
gration over t̂ leads to µ − 1 nested sums over the atomic
neighborhood which might not be computationally favor-
able. Increasing the order ν of the tensor product in the
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scribed by |X (ν)

i �R̂. If one did so while writing explicitly
the environmental ket |Xi� as a sum over neighbors, this
procedure would increase the order of the sum over neigh-
boring atoms. One can however also proceed by expanding
|Xi� in an appropriate basis, e.g. a combination of radial
functions Rn(r) and spherical harmonics

�αnlm|Xi� =
∫

dr Rn(r)Y
m
l (r̂) �r|Xi� , (8)

in which case higher-order invariants can be written as
sums over the expansion coefficients,
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The flexibility of this framework allows links to be drawn
between several representations that might otherwise look
quite dissimilar. The type of smearing function used to
construct the atomic density, the basis onto which the
density is represented (real space grid, orthonormal ba-
sis set, etc.), can impact the effectiveness and the compu-
tational efficiency of the resulting implementation but do
not change the fundamental nature of the invariant repre-
sentation. For example, the choice of Gaussian smearing
and a basis of radial functions corresponds to the smooth
overlap of atomic positions (SOAP) framework,14,46 with
the power spectrum and the bispectrum corresponding to
rotational averages with ν = 2 and ν = 3 respec-
tively. The computation of these coefficients involves
the evaluation of several costly special functions.53 Even
if the cost of evaluating SOAP features can be reduced
greatly by the introduction of approximations and numeri-
cal workarounds,64 the use of both a smooth atom density
and a smooth basis set might seem redundant and costly.
This led Drautz 47 to use Dirac distributions in the repre-
sentation of the density, and obtain smoothness by truncat-
ing the basis set on which this density is expanded. The
resulting invariant representations correspond precisely to
the g → δ limit of the SOAP power spectrum, bispectrum
and higher-ν invariants, but can be expressed in terms of
simpler mathematical functions.

The expansion on a complete basis set of the atomic
density ensures the general applicability of a representa-
tion but it also increases its computational cost by probing
regions of the configurational space that are not relevant
for a given system. The symmetry functions40 framework
make it possible to use the knowledge of the system at hand
to carefully tailor a representation of the atomic environ-
ment. The resulting representation can be interpreted as a
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which underlies most linear-scaling electronic structure
methods,60–63 and the clear computational advantage de-
riving from restricting the range of atomic pairs that need
to be included in the sum, motivates the limitation of the
atomic neighborhood to a sphere of radius rc centered on
each atom through a cutoff function fc(r) that is zero for
r > rc. To simplify notation, we then introduce an atom-
centered symmetrized density representation
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where Xi is an atomic environment centered on atom i
that includes all the neighbors within a sphere of radius
rc. The cutoff function should smoothly decay to zero to
avoid introducing a discontinuity with respect to atoms en-
tering/leaving the atomic neighborhood in the representa-
tion. Using this notation, one can write
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where we note that the integration makes the orientation of
r irrelevant, and we write the feature vector as a function
of r = �r�. Some constant factors and the N2σ2
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term have been omitted because they do not contribute
to the representation since r, rij > 0 with σ relatively
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i �R̂ is essentially a 2-

body correlation function resulting from a Gaussian kernel
density estimation (KDE). The body order naturally char-
acterizes the amount of information included in an invari-
ant density representation.

It is clear that this procedure is very general, and can
be applied to any tensor power of the density, both when
integrating over translations and when integrating over ro-
tations. Increasing the order µ of the product in the inte-
gration over t̂ leads to µ − 1 nested sums over the atomic
neighborhood which might not be computationally favor-
able. Increasing the order ν of the tensor product in the
integral over the continuous rotation group similarly in-
creases the body order of the structural correlations de-
scribed by |X (ν)

i �R̂. If one did so while writing explicitly
the environmental ket |Xi� as a sum over neighbors, this
procedure would increase the order of the sum over neigh-
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|Xi� in an appropriate basis, e.g. a combination of radial
functions Rn(r) and spherical harmonics
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in which case higher-order invariants can be written as
sums over the expansion coefficients,

�αnα�n�l|X (2)
i �R̂ =

1√
2l + 1

∑
m

(−1)m �α�n�lm|Xi�

�αnl −m|Xi� .
(9)

The flexibility of this framework allows links to be drawn
between several representations that might otherwise look
quite dissimilar. The type of smearing function used to
construct the atomic density, the basis onto which the
density is represented (real space grid, orthonormal ba-
sis set, etc.), can impact the effectiveness and the compu-
tational efficiency of the resulting implementation but do
not change the fundamental nature of the invariant repre-
sentation. For example, the choice of Gaussian smearing
and a basis of radial functions corresponds to the smooth
overlap of atomic positions (SOAP) framework,14,46 with
the power spectrum and the bispectrum corresponding to
rotational averages with ν = 2 and ν = 3 respec-
tively. The computation of these coefficients involves
the evaluation of several costly special functions.53 Even
if the cost of evaluating SOAP features can be reduced
greatly by the introduction of approximations and numeri-
cal workarounds,64 the use of both a smooth atom density
and a smooth basis set might seem redundant and costly.
This led Drautz 47 to use Dirac distributions in the repre-
sentation of the density, and obtain smoothness by truncat-
ing the basis set on which this density is expanded. The
resulting invariant representations correspond precisely to
the g → δ limit of the SOAP power spectrum, bispectrum
and higher-ν invariants, but can be expressed in terms of
simpler mathematical functions.

The expansion on a complete basis set of the atomic
density ensures the general applicability of a representa-
tion but it also increases its computational cost by probing
regions of the configurational space that are not relevant
for a given system. The symmetry functions40 framework
make it possible to use the knowledge of the system at hand
to carefully tailor a representation of the atomic environ-
ment. The resulting representation can be interpreted as a
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which underlies most linear-scaling electronic structure
methods,60–63 and the clear computational advantage de-
riving from restricting the range of atomic pairs that need
to be included in the sum, motivates the limitation of the
atomic neighborhood to a sphere of radius rc centered on
each atom through a cutoff function fc(r) that is zero for
r > rc. To simplify notation, we then introduce an atom-
centered symmetrized density representation

�αr|Xi� =
∑
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fc(rij), (4)

where Xi is an atomic environment centered on atom i
that includes all the neighbors within a sphere of radius
rc. The cutoff function should smoothly decay to zero to
avoid introducing a discontinuity with respect to atoms en-
tering/leaving the atomic neighborhood in the representa-
tion. Using this notation, one can write

�αα�r|A(2)�t̂ =
∑
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where we note that the integration makes the orientation of
r irrelevant, and we write the feature vector as a function
of r = �r�. Some constant factors and the N2σ2
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term have been omitted because they do not contribute
to the representation since r, rij > 0 with σ relatively
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This symmetrized density �αr|X (1)
i �R̂ is essentially a 2-

body correlation function resulting from a Gaussian kernel
density estimation (KDE). The body order naturally char-
acterizes the amount of information included in an invari-
ant density representation.

It is clear that this procedure is very general, and can
be applied to any tensor power of the density, both when
integrating over translations and when integrating over ro-
tations. Increasing the order µ of the product in the inte-
gration over t̂ leads to µ − 1 nested sums over the atomic
neighborhood which might not be computationally favor-
able. Increasing the order ν of the tensor product in the
integral over the continuous rotation group similarly in-
creases the body order of the structural correlations de-
scribed by |X (ν)

i �R̂. If one did so while writing explicitly
the environmental ket |Xi� as a sum over neighbors, this
procedure would increase the order of the sum over neigh-
boring atoms. One can however also proceed by expanding
|Xi� in an appropriate basis, e.g. a combination of radial
functions Rn(r) and spherical harmonics

�αnlm|Xi� =
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in which case higher-order invariants can be written as
sums over the expansion coefficients,
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The flexibility of this framework allows links to be drawn
between several representations that might otherwise look
quite dissimilar. The type of smearing function used to
construct the atomic density, the basis onto which the
density is represented (real space grid, orthonormal ba-
sis set, etc.), can impact the effectiveness and the compu-
tational efficiency of the resulting implementation but do
not change the fundamental nature of the invariant repre-
sentation. For example, the choice of Gaussian smearing
and a basis of radial functions corresponds to the smooth
overlap of atomic positions (SOAP) framework,14,46 with
the power spectrum and the bispectrum corresponding to
rotational averages with ν = 2 and ν = 3 respec-
tively. The computation of these coefficients involves
the evaluation of several costly special functions.53 Even
if the cost of evaluating SOAP features can be reduced
greatly by the introduction of approximations and numeri-
cal workarounds,64 the use of both a smooth atom density
and a smooth basis set might seem redundant and costly.
This led Drautz 47 to use Dirac distributions in the repre-
sentation of the density, and obtain smoothness by truncat-
ing the basis set on which this density is expanded. The
resulting invariant representations correspond precisely to
the g → δ limit of the SOAP power spectrum, bispectrum
and higher-ν invariants, but can be expressed in terms of
simpler mathematical functions.

The expansion on a complete basis set of the atomic
density ensures the general applicability of a representa-
tion but it also increases its computational cost by probing
regions of the configurational space that are not relevant
for a given system. The symmetry functions40 framework
make it possible to use the knowledge of the system at hand
to carefully tailor a representation of the atomic environ-
ment. The resulting representation can be interpreted as a

(7)

This symmetrized density 

1

{An}
{yn}

F : A → y

A
N

{ri}
{αi}
y(A)

{ri,αi}
A
|A�
|A�
|A�
α

g

g

Ĝ
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mation (KDE). The body order naturally characterizes the amount 
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ture. The internal parameters of the model are determined by opti-
mizing the accuracy of prediction over a set of training structures, 
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, and their accuracy with respect to that reference can be 
improved systematically by increasing the size of the training 
set.[79] One of the early applications of ML to the prediction of 
atomic-scale properties aimed at obtaining an accurate model of 
the potential energy surface (PES), which is crucial to assess the 
stability of a given configuration, and whose sampling underlies 
the evaluation of the thermodynamic properties of a system.[80] 

Contrary to traditional FFs, which assume physics-inspired 
functional forms for the interactions, and often use experimental 
observable as fitting targets, ML interatomic potentials (MLIPs) 
don’t assume a fixed functional form, and usually rely on elec-
tronic-structure calculations as a reference. In many cases, this 
more general, data-driven approach has been shown to result 
in more transferable and accurate models.[19,20,41,81] Besides the 
PES, ML models have also been successful at predicting other 
zero Kelvin properties such as chemical shieldings, band gaps, 
electron affinities, electron transfer integrals and static isotropic 
polarizabilities.[14,15,21,77,82–85] While considerable success has 
also been shown in using ML to predict complex properties that 
cannot be seen as arising from an individual atomic configura-
tion (e.g. the free-energy of a state, the toxicity or pharmaceuti-
cal activity of a molecule, etc.), here we will focus entirely on 
the well-defined task of building a surrogate quantum model, 
which can sidestep the solution of the Schrödinger equation and 
predict the properties of a specific atomic configuration. In this 
section we summarize the regression methods that have been 
applied to perform such prediction. While the main focus will 
be on the construction of interatomic potentials, we will keep 
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density estimate of the invariant correlation function. These two 
representations differ by the choice of kernel functions and how 
they encode the chemical information, with the FHCL features 
using a kernel to encode the similarity between different elements, 
similarly to what was done in ref. [14].

The density-based representation framework makes it possible 
to rigorously formulate a hierarchy of invariant representations 
and shows that several commonly used descriptions of atomic 
structures and environments actually contain a similar amount of 
information. This formal connection is also reflected in several 
recent extensive empirical benchmarks,[65–67] that show that many 
of these representations actually perform similarly in terms of 
model accuracy, while the main difference between them is their 
computational cost.
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,[53,54] providing a symmetry-adapted basis 
to learn properties such as atomic forces, elastic moduli or dielec-
tric response tensors, which also rotate rigidly under 
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 group 
operations. Using a generic atom-centered symmetry-adapted rep-
resentation has proven to be more effective[68] than frameworks 
that assume a rigid molecular frame to achieve covariance of the 
predicted properties,[69,70] and has made it possible to learn an atom-
centered decomposition of a scalar field like the electron density.
[23,71] Although learning schemes based on covariant features or 
kernels[55,72–74] could in principle be used to machine-learn directly 
the inter-atomic forces rather than the underlying atomic potential, 
enforcing energy conservation has proven difficult. For this reason, 
most of the existing machine-learning interatomic potentials are 
built to predict the potential, although they can incorporate forces 
as an indirect learning target.[20,40,75–77]

3. Machine Learning Quantum Mechanics
ML algorithms for regression[78] aim to construct a model 
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Fig. 1. A graphical summary of the steps leading from a decorated atomic density to the 3-body invariant representation of ethanol in real space 
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. (a) The geometry of a small molecule is mapped into a smooth atom density using a Gaussian smearing function. The chemical composi-
tion represented by the elemental ket α〉 is color coded: carbons are black, oxygen is red and hydrogens are grey. (b) The symmetrization over the 
translational group of a two-point density results in the decomposition of the representation into a sum of atom-centered contributions where a finite 
cutoff has been applied (see Eqn. (4)). (c) The symmetrization over the rotational group with ν = 2 delivers the 3-body invariant representation. Some 
isocontours of 
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 associated with the central carbon atom illustrate some of the real space features extracted with the atom 
density framework. Adapted from ref. [58].
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ity of a given configuration, and whose sampling underlies
the evaluation of the thermodynamic properties of a sys-
tem.80 Contrary to traditional FFs, which assume physics-
inspired functional forms for the interactions, and often use
experimental observable as fitting targets, ML interatomic
potentials (MLIPs) don’t assume a fixed functional form,
and usually rely on electronic-structure calculations as a
reference. In many cases, this more general, data-driven
approach has been shown to result in more transferable and
accurate models.19,20,41,81 Besides the PES, ML models
have also been successful at predicting other zero Kelvin
properties such as chemical shieldings, band gaps, electron
affinities, electron transfer integrals and static isotropic po-
larizabilities.14,15,21,77,82–85 While considerable success has
also been shown in using ML to predict complex properties
that cannot be seen as arising from an individual atomic
configuration (e.g. the free-energy of a state, the toxic-
ity or pharmaceutical activity of a molecule, etc.), here we
will focus entirely on the well-defined task of building a
surrogate quantum model, which can sidestep the solution
of the Schrödinger equation and predict the properties of
a specific atomic configuration. In this section we sum-
marize the regression methods that have been applied to
perform such prediction. While the main focus will be on
the construction of interatomic potentials, we will keep the
discussion as general as possible, and mention how the dif-
ferent approaches should be modified to deal with other
classes of properties.

A scalar property y({ri,αi}) of a system A of N
atoms of species αi, located at positions ri, can be ex-
pressed formally as a function of an abstract vector of fea-
tures |A〉 that represents the structure,

y(A) = F (|A〉). (11)

The problem of modeling y(A) can therefore be decom-
posed into the problem of providing a concrete formula-
tion of the feature vector (that we have discussed in detail
in the previous Section) and that of determining the func-
tional form of the approximating model F . Irrespective
of the regression technique used, most of the transferable
property models that have been introduced in recent years
decompose a property associated to a set of atoms A into
atom-centered contributions, i.e.

y(A) =
∑
i∈A

f(|Xi〉), (12)

where f is a trained ML model and Xi indicates the atomic
environment centered on atom i of structure A. This
choice can be motivated as a consequence of imposing the
invariance of the property on the absolute position of the
system (see Eq. (3)), and – together with the limitation of
the range of each environment to a region centered on the i-
th atom – yields models of great transferability, since it al-
lows breaking down the properties of large, complex con-
figurations into a sum of contributions that only depend on
the position of a few dozen atoms. In the cases in which
this ansatz is not justified (e.g. for properties such as lig-
and binding affinity, or in the presence of significant long-

range interactions) other strategies for combining local en-
vironments predictions like the REMatch kernel should be
considered.84

Linear models based on permutation invariant polyno-
mials (PIPs) have been very effective at reproducing accu-
rately chemical reactions between small molecules27,41,42

and to build efficient MLIPs with the many-body ten-
sor (MBT) framework43 that extends them to more com-
plex systems.86,87 Similarly linear models based on the
n-body correlation function47,50,88–90 have shown great
promise. Fully non-linear models based on artificial neu-
ral networks (ANN) have however been the most pop-
ular this far. ANNs have been constructed based on
the the expansion of the radial (and angular) distribution
function on a basis such as the Behler-Parrinello sym-
metry functions81,91–97, Zernike polynomials98, Chebychev
polynomials99, Gaussians77,100–102, and proved very suc-
cessful at investigating the properties of complex sys-
tems.85,103–108 Another class of models that have been both
very popular and successful is based on Gaussian process
regression (GPR),109 that is formally equivalent to ker-
nel ridge regression (KRR) and can be seen as a middle-
ground solution that introduces non-linearity in the form of
a kernel function k(X ,X �) built on pairs of feature vectors,
but effectively translates into a linear regression problem
that uses (some of) the training set structures as the ba-
sis on which the structure-property relation is constructed.
GPR has been used to predict the stability of molecules
and solids14,15,19,20,83,84,110–114 and build MLIPs for ele-
mental solids,115–118 nano clusters,119 isolated molecules76

and molecular liquids120 as well as for the direct prediction
of other quantum mechanical properties.15,21,68,82,121–123

In the most straightforward form, a GPR model built
on a kernel function k can be written based on a set of N
training structures {Tn}, and the associated properties yn.
Assuming a Gaussian likelihood, and an additive, atom-
centered property model, the prediction for a structure A
becomes

y(A) =

N∑
n=1

xnKATn , (13)

where KATn =
∑

i∈A
∑

j∈Tn
k(Xi, Tn,j) and the kernel

function k(·, ·) quantifies the similarity between the local
environments of Tn and the centered structure Xi. The
key ingredient of this model is the kernel function that -
subject to a few conditions such as positive definiteness
- defines an inner product between the inputs k(Xi,Xj).
The repesenter theorem124 guarantees that the kernel can
be associated with an inner product between vectors in a
Hilbert space, i.e. k(Xi,Xj) = 〈Xi|Xj〉. The use of the
Dirac notation underlines the independence of the basis,
i.e. representation or features, used to effectively quan-
tify the similarity between atomic configurations. In some
cases - for instance in the case of the SOAP representation
discussed in the previous Section - it may be possible to
write explicitly the feature vectors associated with a given
kernel.

GPR is often preferred over the more sophisticated
non-linear models because of its ease of use: it has a sin-

(11)
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ity of a given configuration, and whose sampling underlies
the evaluation of the thermodynamic properties of a sys-
tem.80 Contrary to traditional FFs, which assume physics-
inspired functional forms for the interactions, and often use
experimental observable as fitting targets, ML interatomic
potentials (MLIPs) don’t assume a fixed functional form,
and usually rely on electronic-structure calculations as a
reference. In many cases, this more general, data-driven
approach has been shown to result in more transferable and
accurate models.19,20,41,81 Besides the PES, ML models
have also been successful at predicting other zero Kelvin
properties such as chemical shieldings, band gaps, electron
affinities, electron transfer integrals and static isotropic po-
larizabilities.14,15,21,77,82–85 While considerable success has
also been shown in using ML to predict complex properties
that cannot be seen as arising from an individual atomic
configuration (e.g. the free-energy of a state, the toxic-
ity or pharmaceutical activity of a molecule, etc.), here we
will focus entirely on the well-defined task of building a
surrogate quantum model, which can sidestep the solution
of the Schrödinger equation and predict the properties of
a specific atomic configuration. In this section we sum-
marize the regression methods that have been applied to
perform such prediction. While the main focus will be on
the construction of interatomic potentials, we will keep the
discussion as general as possible, and mention how the dif-
ferent approaches should be modified to deal with other
classes of properties.

A scalar property y({ri,αi}) of a system A of N
atoms of species αi, located at positions ri, can be ex-
pressed formally as a function of an abstract vector of fea-
tures |A〉 that represents the structure,

y(A) = F (|A〉). (11)

The problem of modeling y(A) can therefore be decom-
posed into the problem of providing a concrete formula-
tion of the feature vector (that we have discussed in detail
in the previous Section) and that of determining the func-
tional form of the approximating model F . Irrespective
of the regression technique used, most of the transferable
property models that have been introduced in recent years
decompose a property associated to a set of atoms A into
atom-centered contributions, i.e.

y(A) =
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i∈A

f(|Xi〉), (12)

where f is a trained ML model and Xi indicates the atomic
environment centered on atom i of structure A. This
choice can be motivated as a consequence of imposing the
invariance of the property on the absolute position of the
system (see Eq. (3)), and – together with the limitation of
the range of each environment to a region centered on the i-
th atom – yields models of great transferability, since it al-
lows breaking down the properties of large, complex con-
figurations into a sum of contributions that only depend on
the position of a few dozen atoms. In the cases in which
this ansatz is not justified (e.g. for properties such as lig-
and binding affinity, or in the presence of significant long-

range interactions) other strategies for combining local en-
vironments predictions like the REMatch kernel should be
considered.84

Linear models based on permutation invariant polyno-
mials (PIPs) have been very effective at reproducing accu-
rately chemical reactions between small molecules27,41,42

and to build efficient MLIPs with the many-body ten-
sor (MBT) framework43 that extends them to more com-
plex systems.86,87 Similarly linear models based on the
n-body correlation function47,50,88–90 have shown great
promise. Fully non-linear models based on artificial neu-
ral networks (ANN) have however been the most pop-
ular this far. ANNs have been constructed based on
the the expansion of the radial (and angular) distribution
function on a basis such as the Behler-Parrinello sym-
metry functions81,91–97, Zernike polynomials98, Chebychev
polynomials99, Gaussians77,100–102, and proved very suc-
cessful at investigating the properties of complex sys-
tems.85,103–108 Another class of models that have been both
very popular and successful is based on Gaussian process
regression (GPR),109 that is formally equivalent to ker-
nel ridge regression (KRR) and can be seen as a middle-
ground solution that introduces non-linearity in the form of
a kernel function k(X ,X �) built on pairs of feature vectors,
but effectively translates into a linear regression problem
that uses (some of) the training set structures as the ba-
sis on which the structure-property relation is constructed.
GPR has been used to predict the stability of molecules
and solids14,15,19,20,83,84,110–114 and build MLIPs for ele-
mental solids,115–118 nano clusters,119 isolated molecules76

and molecular liquids120 as well as for the direct prediction
of other quantum mechanical properties.15,21,68,82,121–123

In the most straightforward form, a GPR model built
on a kernel function k can be written based on a set of N
training structures {Tn}, and the associated properties yn.
Assuming a Gaussian likelihood, and an additive, atom-
centered property model, the prediction for a structure A
becomes

y(A) =

N∑
n=1

xnKATn , (13)

where KATn
=

∑
i∈A

∑
j∈Tn

k(Xi, Tn,j) and the kernel
function k(·, ·) quantifies the similarity between the local
environments of Tn and the centered structure Xi. The
key ingredient of this model is the kernel function that -
subject to a few conditions such as positive definiteness
- defines an inner product between the inputs k(Xi,Xj).
The repesenter theorem124 guarantees that the kernel can
be associated with an inner product between vectors in a
Hilbert space, i.e. k(Xi,Xj) = 〈Xi|Xj〉. The use of the
Dirac notation underlines the independence of the basis,
i.e. representation or features, used to effectively quan-
tify the similarity between atomic configurations. In some
cases - for instance in the case of the SOAP representation
discussed in the previous Section - it may be possible to
write explicitly the feature vectors associated with a given
kernel.

GPR is often preferred over the more sophisticated
non-linear models because of its ease of use: it has a sin-

(12)
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Ĝ

G

|A�
|A�Ĝ
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only depend on the position of a few dozen atoms. In the cases 
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predictions like the REMatch kernel should be considered.[84]

Linear models based on permutation invariant polynomials 
(PIPs) have been very effective at reproducing accurately chemi-
cal reactions between small molecules[27,41,42] and to build efficient 
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tends them to more complex systems.[86,87] Similarly linear mod-
els based on the n-body correlation function[47,50,88–90] have shown 
great promise. Fully non-linear models based on artificial neural 
networks (ANN) have, however, been the most popular this far. 
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ity of a given configuration, and whose sampling underlies
the evaluation of the thermodynamic properties of a sys-
tem.80 Contrary to traditional FFs, which assume physics-
inspired functional forms for the interactions, and often use
experimental observable as fitting targets, ML interatomic
potentials (MLIPs) don’t assume a fixed functional form,
and usually rely on electronic-structure calculations as a
reference. In many cases, this more general, data-driven
approach has been shown to result in more transferable and
accurate models.19,20,41,81 Besides the PES, ML models
have also been successful at predicting other zero Kelvin
properties such as chemical shieldings, band gaps, electron
affinities, electron transfer integrals and static isotropic po-
larizabilities.14,15,21,77,82–85 While considerable success has
also been shown in using ML to predict complex properties
that cannot be seen as arising from an individual atomic
configuration (e.g. the free-energy of a state, the toxic-
ity or pharmaceutical activity of a molecule, etc.), here we
will focus entirely on the well-defined task of building a
surrogate quantum model, which can sidestep the solution
of the Schrödinger equation and predict the properties of
a specific atomic configuration. In this section we sum-
marize the regression methods that have been applied to
perform such prediction. While the main focus will be on
the construction of interatomic potentials, we will keep the
discussion as general as possible, and mention how the dif-
ferent approaches should be modified to deal with other
classes of properties.

A scalar property y({ri,αi}) of a system A of N
atoms of species αi, located at positions ri, can be ex-
pressed formally as a function of an abstract vector of fea-
tures |A〉 that represents the structure,

y(A) = F (|A〉). (11)

The problem of modeling y(A) can therefore be decom-
posed into the problem of providing a concrete formula-
tion of the feature vector (that we have discussed in detail
in the previous Section) and that of determining the func-
tional form of the approximating model F . Irrespective
of the regression technique used, most of the transferable
property models that have been introduced in recent years
decompose a property associated to a set of atoms A into
atom-centered contributions, i.e.

y(A) =
∑
i∈A

f(|Xi〉), (12)

where f is a trained ML model and Xi indicates the atomic
environment centered on atom i of structure A. This
choice can be motivated as a consequence of imposing the
invariance of the property on the absolute position of the
system (see Eq. (3)), and – together with the limitation of
the range of each environment to a region centered on the i-
th atom – yields models of great transferability, since it al-
lows breaking down the properties of large, complex con-
figurations into a sum of contributions that only depend on
the position of a few dozen atoms. In the cases in which
this ansatz is not justified (e.g. for properties such as lig-
and binding affinity, or in the presence of significant long-

range interactions) other strategies for combining local en-
vironments predictions like the REMatch kernel should be
considered.84

Linear models based on permutation invariant polyno-
mials (PIPs) have been very effective at reproducing accu-
rately chemical reactions between small molecules27,41,42

and to build efficient MLIPs with the many-body ten-
sor (MBT) framework43 that extends them to more com-
plex systems.86,87 Similarly linear models based on the
n-body correlation function47,50,88–90 have shown great
promise. Fully non-linear models based on artificial neu-
ral networks (ANN) have however been the most pop-
ular this far. ANNs have been constructed based on
the the expansion of the radial (and angular) distribution
function on a basis such as the Behler-Parrinello sym-
metry functions81,91–97, Zernike polynomials98, Chebychev
polynomials99, Gaussians77,100–102, and proved very suc-
cessful at investigating the properties of complex sys-
tems.85,103–108 Another class of models that have been both
very popular and successful is based on Gaussian process
regression (GPR),109 that is formally equivalent to ker-
nel ridge regression (KRR) and can be seen as a middle-
ground solution that introduces non-linearity in the form of
a kernel function k(X ,X �) built on pairs of feature vectors,
but effectively translates into a linear regression problem
that uses (some of) the training set structures as the ba-
sis on which the structure-property relation is constructed.
GPR has been used to predict the stability of molecules
and solids14,15,19,20,83,84,110–114 and build MLIPs for ele-
mental solids,115–118 nano clusters,119 isolated molecules76

and molecular liquids120 as well as for the direct prediction
of other quantum mechanical properties.15,21,68,82,121–123

In the most straightforward form, a GPR model built
on a kernel function k can be written based on a set of N
training structures {Tn}, and the associated properties yn.
Assuming a Gaussian likelihood, and an additive, atom-
centered property model, the prediction for a structure A
becomes

y(A) =

N∑
n=1

xnKATn , (13)

where KATn
=

∑
i∈A

∑
j∈Tn

k(Xi, Tn,j) and the kernel
function k(·, ·) quantifies the similarity between the local
environments of Tn and the centered structure Xi. The
key ingredient of this model is the kernel function that -
subject to a few conditions such as positive definiteness
- defines an inner product between the inputs k(Xi,Xj).
The repesenter theorem124 guarantees that the kernel can
be associated with an inner product between vectors in a
Hilbert space, i.e. k(Xi,Xj) = 〈Xi|Xj〉. The use of the
Dirac notation underlines the independence of the basis,
i.e. representation or features, used to effectively quan-
tify the similarity between atomic configurations. In some
cases - for instance in the case of the SOAP representation
discussed in the previous Section - it may be possible to
write explicitly the feature vectors associated with a given
kernel.

GPR is often preferred over the more sophisticated
non-linear models because of its ease of use: it has a sin-

(13)
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. The key ingredient of this model 
is the kernel function that – subject to a few conditions such as 
positive definiteness – defines an inner product between the in-
puts 
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. The representer theorem[124] guarantees that the 
kernel can be associated with an inner product between vectors 
in a Hilbert space, i.e. 

2

(ν + 1)

�αr|X (1)
i �R̂,g→δ =

∑
j∈Xi,α

δ(r − rij)fc(rij)

δ

δ

(ν + 1)

|X (ν)
i �R̂∣∣∣X (ν)λµ

〉
R̂

Y µ
λ

SO (3)

y = F (A)

{Ai, yi}
y({ri,αi})

A
N

αi

ri

|A�
y(A)

F

A
f

Xi

i

A
i

n

k(X ,X �)

∇i

ith

KAXn =
∑
i∈A

∑
j∈Xn

k(Xi,Xn
j )

k(·, ·)
N

{Xn}
Xi

k

N

{Tn}
yn

A
KATn =

∑
i∈A

∑
j∈Tn

k(Xi, Tn,j)

k(·, ·)
Tn
Xi

k(Xi,Xj)

k(Xi,Xj) = �Xi|Xj�
σ

xn

Knm = KTnTm + σ2δnm

N

yn

Tn
σ

y

y

λ

kλµµ′(X ,X �) =
∑
nn′ll′

〈
X (2)λµ

∣∣∣nn�ll�
〉〈

nn�ll�
∣∣∣X �(2)λµ

〉
.

M

M ×M

M

K̃ = KMM + σ−2KT
NMKNM

KMM

KNM

σ

rc

k

σ

1

1

2

Nr

P (y|A)

y(i)(A)

ith

Nr

y(A)

Nr

yn

. The use of the Dirac 
notation underlines the independence from the basis, i.e. repre-
sentation or features, used to effectively quantify the similarity 
between atomic configurations. In some cases – for instance in 
the case of the SOAP representation discussed in the previous 
Section – it may be possible to write explicitly the feature vectors 
associated with a given kernel.

GPR is often preferred over the more sophisticated non-linear 
models because of its ease of use: it has a single interpretable hy-
perparameter σ, and the solution for the weights x

n
 has the closed 

form
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gle interpretable hyperparameter σ, and the solution for the
weights xn has the closed form

x = K−1y, (14)

where Knm = KTnTm + σ2δnm is the kernel matrix be-
tween the N training inputs and yn is the property associ-
ated with structure Tn; σ corresponds to an expected Gaus-
sian noise in the references y so it can account for small
discrepancies in the convergence of the electronic struc-
ture method that are often found across a training set. In
the language of kernel ridge regression, Eq. (14) can be
obtained by minimizing the loss

L(x) =
∑
n

|y(Tn)− yn|2 + σ2
∑
n

x2
n. (15)

It should be mentioned that GPR provides a simple ap-
proach to compute derivatives of the target properties with
respect to atomic positions, e.g. the force consistent with
the model, in which case y represents the PES of a config-
uration. Such derivatives are easily expressed in terms of
derivatives of the kernel, i.e.

∂y(Xi)

∂ri
=

N∑
n=1

∑
j∈Tn

xn
∂

∂ri
k(Xi, Tn,j). (16)

Derivatives can also be incorporated in the learning pro-
cedure,75,76,109,114,123,125 by including the discrepancy be-
tween reference and predicted values in the loss Eq. (15).
Building a symmetry-adapted GPR model for properties
that have a tensorial nature requires the construction of co-
variant kernels,54,55 that describe the correlations between
the spherically-covariant components of the target prop-
erty,

yµλ(A) =
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n=1
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xnm [KATn
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λ
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For instance, a kernel which fulfills these symmetry re-
quirements can be constructed based on λ-SOAP fea-
tures,54
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Finally, the probabilistic nature of GPR also allows one to
estimate the uncertainty associated with the prediction

σy(A) = σ2 +KAA −KT
NAK

−1KNA. (19)

The drawback for such simplicity is the computational
cost associated with the training phase - which scales cu-
bically with the training set size - and the need to use the
full training set as a basis to perform predictions. To ad-
dress this issue, many approximations of the exact kernel
matrix have been proposed,126,127 among which the pro-
jected process (PP) approximation 126,128 has been shown
to be quite practical to include force references75,125 and
effective from the point of view of the cost and accuracy
of predictions.118,129 The PP method introduces M pseudo

inputs to approximate the GP prior which practically re-
duces the cost of training to the inversion of a M ×M ma-
trix, and ensures that predictions only require computing
kernels between the new configurations and the M pseudo
inputs:

yPP(A) = KT
MAK̃

−1KMNy,

σPP
y (A) = σ2 +KAA −KT

MAK
−1
MMKMA

+KT
MAK̃

−1KMA,

(20)

where K̃ = KMM + σ−2KT
NMKNM , KMM indicates

the kernel matrix between pseudo inputs, and KNM the
matrix between training points and pseudo inputs. For sim-
plicity, the pseudo inputs (or active points) can be chosen
directly from the training set and they represent a new basis
in which the regression is performed. To maximize the cost
reduction and the accuracy of the model, one needs to sam-
ple the active set carefully. Selecting randomly the active
inputs is far from optimal so several approaches have been
proposed128,130–132 among which Farthest Point Sampling
(FPS),133 a greedy method that maximises diversity, or a
CUR decomposition125,134 of the feature matrix associated
with the training set, which minimizes the effect of the PP
on the kernel matrix, have allowed significant reductions
of the computational cost with minimal degradation of the
accuracy.118,129

ML algorithms include recipes to train their parame-
ters, e.g. Eq. (14), but they do not specify how to de-
termine hyperparameters such as the regularization σ for
GPR, the number of layers in an ANN and the cutoff ra-
dius rc in the power spectrum representation, which can
influence heavily the quality of the model. In the Bayesian
context these hyperparameters can be interpreted as priors
that should be inferred from our knowledge of the physi-
cal system,125 or thought of as parameters that need to be
optimized. In principle the best parameters should allow
for the lowest possible prediction error on all possible in-
puts. Given that one can only work on a finite-sized set
of references, the problem becomes to find the parame-
ters that best reproduce the available references and at the
same time generalize well to unknown inputs. The per-
formance of a model is measured by comparing the pre-
dicted values and the reference values with metrics such
as the mean absolute error (MAE) or the root mean square
error (RMSE). An effective technique to avoid overfitting
these parameters, i.e. specialize the model for the train-
ing set which leads to poor generalization performances,
is the so called k-fold cross-validation where the perfor-
mances are evaluated on several subsets of the training set
(see Hansen et al. 111 for more details). Cross validated
scores are more likely to match the generalization error
which is a good basis to rank models and determine the
optimal set of hyperparameters.135 Learning curves are an-
other standard diagnostic tool to characterize the perfor-
mance of ML models. From statistical theory, the error of
a given model decreases as a power-law with the size of the
training set.79 Figure 2 shows, on a logarithmic scale, three
learning curves for models trained on datasets of molecular
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 so it can account for small discrepancies in the convergence of 
the electronic structure method that are often found across a train-
ing set. In the language of kernel ridge regression, Eqn. (14) can 
be obtained by minimizing the loss
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gle interpretable hyperparameter σ, and the solution for the
weights xn has the closed form

x = K−1y, (14)

where Knm = KTnTm + σ2δnm is the kernel matrix be-
tween the N training inputs and yn is the property associ-
ated with structure Tn; σ corresponds to an expected Gaus-
sian noise in the references y so it can account for small
discrepancies in the convergence of the electronic struc-
ture method that are often found across a training set. In
the language of kernel ridge regression, Eq. (14) can be
obtained by minimizing the loss

L(x) =
∑
n

|y(Tn)− yn|2 + σ2
∑
n

x2
n. (15)

It should be mentioned that GPR provides a simple ap-
proach to compute derivatives of the target properties with
respect to atomic positions, e.g. the force consistent with
the model, in which case y represents the PES of a config-
uration. Such derivatives are easily expressed in terms of
derivatives of the kernel, i.e.

∂y(Xi)

∂ri
=

N∑
n=1

∑
j∈Tn

xn
∂

∂ri
k(Xi, Tn,j). (16)

Derivatives can also be incorporated in the learning pro-
cedure,75,76,109,114,123,125 by including the discrepancy be-
tween reference and predicted values in the loss Eq. (15).
Building a symmetry-adapted GPR model for properties
that have a tensorial nature requires the construction of co-
variant kernels,54,55 that describe the correlations between
the spherically-covariant components of the target prop-
erty,

yµλ(A) =

N∑
n=1

λ∑
m=−λ

xnm [KATn ]
λ
mµ . (17)

For instance, a kernel which fulfills these symmetry re-
quirements can be constructed based on λ-SOAP fea-
tures,54
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Finally, the probabilistic nature of GPR also allows one to
estimate the uncertainty associated with the prediction

σy(A) = σ2 +KAA −KT
NAK

−1KNA. (19)

The drawback for such simplicity is the computational
cost associated with the training phase - which scales cu-
bically with the training set size - and the need to use the
full training set as a basis to perform predictions. To ad-
dress this issue, many approximations of the exact kernel
matrix have been proposed,126,127 among which the pro-
jected process (PP) approximation 126,128 has been shown
to be quite practical to include force references75,125 and
effective from the point of view of the cost and accuracy
of predictions.118,129 The PP method introduces M pseudo

inputs to approximate the GP prior which practically re-
duces the cost of training to the inversion of a M ×M ma-
trix, and ensures that predictions only require computing
kernels between the new configurations and the M pseudo
inputs:

yPP(A) = KT
MAK̃

−1KMNy,

σPP
y (A) = σ2 +KAA −KT

MAK
−1
MMKMA

+KT
MAK̃

−1KMA,

(20)

where K̃ = KMM + σ−2KT
NMKNM , KMM indicates

the kernel matrix between pseudo inputs, and KNM the
matrix between training points and pseudo inputs. For sim-
plicity, the pseudo inputs (or active points) can be chosen
directly from the training set and they represent a new basis
in which the regression is performed. To maximize the cost
reduction and the accuracy of the model, one needs to sam-
ple the active set carefully. Selecting randomly the active
inputs is far from optimal so several approaches have been
proposed128,130–132 among which Farthest Point Sampling
(FPS),133 a greedy method that maximises diversity, or a
CUR decomposition125,134 of the feature matrix associated
with the training set, which minimizes the effect of the PP
on the kernel matrix, have allowed significant reductions
of the computational cost with minimal degradation of the
accuracy.118,129

ML algorithms include recipes to train their parame-
ters, e.g. Eq. (14), but they do not specify how to de-
termine hyperparameters such as the regularization σ for
GPR, the number of layers in an ANN and the cutoff ra-
dius rc in the power spectrum representation, which can
influence heavily the quality of the model. In the Bayesian
context these hyperparameters can be interpreted as priors
that should be inferred from our knowledge of the physi-
cal system,125 or thought of as parameters that need to be
optimized. In principle the best parameters should allow
for the lowest possible prediction error on all possible in-
puts. Given that one can only work on a finite-sized set
of references, the problem becomes to find the parame-
ters that best reproduce the available references and at the
same time generalize well to unknown inputs. The per-
formance of a model is measured by comparing the pre-
dicted values and the reference values with metrics such
as the mean absolute error (MAE) or the root mean square
error (RMSE). An effective technique to avoid overfitting
these parameters, i.e. specialize the model for the train-
ing set which leads to poor generalization performances,
is the so called k-fold cross-validation where the perfor-
mances are evaluated on several subsets of the training set
(see Hansen et al. 111 for more details). Cross validated
scores are more likely to match the generalization error
which is a good basis to rank models and determine the
optimal set of hyperparameters.135 Learning curves are an-
other standard diagnostic tool to characterize the perfor-
mance of ML models. From statistical theory, the error of
a given model decreases as a power-law with the size of the
training set.79 Figure 2 shows, on a logarithmic scale, three
learning curves for models trained on datasets of molecular

(15)
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weights xn has the closed form

x = K−1y, (14)

where Knm = KTnTm
+ σ2δnm is the kernel matrix be-

tween the N training inputs and yn is the property associ-
ated with structure Tn; σ corresponds to an expected Gaus-
sian noise in the references y so it can account for small
discrepancies in the convergence of the electronic struc-
ture method that are often found across a training set. In
the language of kernel ridge regression, Eq. (14) can be
obtained by minimizing the loss

L(x) =
∑
n

|y(Tn)− yn|2 + σ2
∑
n

x2
n. (15)

It should be mentioned that GPR provides a simple ap-
proach to compute derivatives of the target properties with
respect to atomic positions, e.g. the force consistent with
the model, in which case y represents the PES of a config-
uration. Such derivatives are easily expressed in terms of
derivatives of the kernel, i.e.

∂y(Xi)

∂ri
=

N∑
n=1
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Derivatives can also be incorporated in the learning pro-
cedure,75,76,109,114,123,125 by including the discrepancy be-
tween reference and predicted values in the loss Eq. (15).
Building a symmetry-adapted GPR model for properties
that have a tensorial nature requires the construction of co-
variant kernels,54,55 that describe the correlations between
the spherically-covariant components of the target prop-
erty,
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Finally, the probabilistic nature of GPR also allows one to
estimate the uncertainty associated with the prediction

σy(A) = σ2 +KAA −KT
NAK

−1KNA. (19)

The drawback for such simplicity is the computational
cost associated with the training phase - which scales cu-
bically with the training set size - and the need to use the
full training set as a basis to perform predictions. To ad-
dress this issue, many approximations of the exact kernel
matrix have been proposed,126,127 among which the pro-
jected process (PP) approximation 126,128 has been shown
to be quite practical to include force references75,125 and
effective from the point of view of the cost and accuracy
of predictions.118,129 The PP method introduces M pseudo

inputs to approximate the GP prior which practically re-
duces the cost of training to the inversion of a M ×M ma-
trix, and ensures that predictions only require computing
kernels between the new configurations and the M pseudo
inputs:
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MAK̃

−1KMNy,
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where K̃ = KMM + σ−2KT
NMKNM , KMM indicates

the kernel matrix between pseudo inputs, and KNM the
matrix between training points and pseudo inputs. For sim-
plicity, the pseudo inputs (or active points) can be chosen
directly from the training set and they represent a new basis
in which the regression is performed. To maximize the cost
reduction and the accuracy of the model, one needs to sam-
ple the active set carefully. Selecting randomly the active
inputs is far from optimal so several approaches have been
proposed128,130–132 among which Farthest Point Sampling
(FPS),133 a greedy method that maximises diversity, or a
CUR decomposition125,134 of the feature matrix associated
with the training set, which minimizes the effect of the PP
on the kernel matrix, have allowed significant reductions
of the computational cost with minimal degradation of the
accuracy.118,129

ML algorithms include recipes to train their parame-
ters, e.g. Eq. (14), but they do not specify how to de-
termine hyperparameters such as the regularization σ for
GPR, the number of layers in an ANN and the cutoff ra-
dius rc in the power spectrum representation, which can
influence heavily the quality of the model. In the Bayesian
context these hyperparameters can be interpreted as priors
that should be inferred from our knowledge of the physi-
cal system,125 or thought of as parameters that need to be
optimized. In principle the best parameters should allow
for the lowest possible prediction error on all possible in-
puts. Given that one can only work on a finite-sized set
of references, the problem becomes to find the parame-
ters that best reproduce the available references and at the
same time generalize well to unknown inputs. The per-
formance of a model is measured by comparing the pre-
dicted values and the reference values with metrics such
as the mean absolute error (MAE) or the root mean square
error (RMSE). An effective technique to avoid overfitting
these parameters, i.e. specialize the model for the train-
ing set which leads to poor generalization performances,
is the so called k-fold cross-validation where the perfor-
mances are evaluated on several subsets of the training set
(see Hansen et al. 111 for more details). Cross validated
scores are more likely to match the generalization error
which is a good basis to rank models and determine the
optimal set of hyperparameters.135 Learning curves are an-
other standard diagnostic tool to characterize the perfor-
mance of ML models. From statistical theory, the error of
a given model decreases as a power-law with the size of the
training set.79 Figure 2 shows, on a logarithmic scale, three
learning curves for models trained on datasets of molecular
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Derivatives can also be incorporated in the learning proce-
dure,[75,76,109,114,123,125] by including the discrepancy between 
reference and predicted values in the loss Eqn. (15). Building a 
symmetry-adapted GPR model for properties that have a tenso-
rial nature requires the construction of covariant kernels,[54,55] that 
describe the correlations between the spherically-covariant com-
ponents of the target property,
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gle interpretable hyperparameter σ, and the solution for the
weights xn has the closed form

x = K−1y, (14)

where Knm = KTnTm + σ2δnm is the kernel matrix be-
tween the N training inputs and yn is the property associ-
ated with structure Tn; σ corresponds to an expected Gaus-
sian noise in the references y so it can account for small
discrepancies in the convergence of the electronic struc-
ture method that are often found across a training set. In
the language of kernel ridge regression, Eq. (14) can be
obtained by minimizing the loss

L(x) =
∑
n

|y(Tn)− yn|2 + σ2
∑
n

x2
n. (15)

It should be mentioned that GPR provides a simple ap-
proach to compute derivatives of the target properties with
respect to atomic positions, e.g. the force consistent with
the model, in which case y represents the PES of a config-
uration. Such derivatives are easily expressed in terms of
derivatives of the kernel, i.e.

∂y(Xi)

∂ri
=

N∑
n=1

∑
j∈Tn
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∂

∂ri
k(Xi, Tn,j). (16)

Derivatives can also be incorporated in the learning pro-
cedure,75,76,109,114,123,125 by including the discrepancy be-
tween reference and predicted values in the loss Eq. (15).
Building a symmetry-adapted GPR model for properties
that have a tensorial nature requires the construction of co-
variant kernels,54,55 that describe the correlations between
the spherically-covariant components of the target prop-
erty,
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For instance, a kernel which fulfills these symmetry re-
quirements can be constructed based on λ-SOAP fea-
tures,54
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Finally, the probabilistic nature of GPR also allows one to
estimate the uncertainty associated with the prediction

σy(A) = σ2 +KAA −KT
NAK

−1KNA. (19)

The drawback for such simplicity is the computational
cost associated with the training phase - which scales cu-
bically with the training set size - and the need to use the
full training set as a basis to perform predictions. To ad-
dress this issue, many approximations of the exact kernel
matrix have been proposed,126,127 among which the pro-
jected process (PP) approximation 126,128 has been shown
to be quite practical to include force references75,125 and
effective from the point of view of the cost and accuracy
of predictions.118,129 The PP method introduces M pseudo

inputs to approximate the GP prior which practically re-
duces the cost of training to the inversion of a M ×M ma-
trix, and ensures that predictions only require computing
kernels between the new configurations and the M pseudo
inputs:
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where K̃ = KMM + σ−2KT
NMKNM , KMM indicates

the kernel matrix between pseudo inputs, and KNM the
matrix between training points and pseudo inputs. For sim-
plicity, the pseudo inputs (or active points) can be chosen
directly from the training set and they represent a new basis
in which the regression is performed. To maximize the cost
reduction and the accuracy of the model, one needs to sam-
ple the active set carefully. Selecting randomly the active
inputs is far from optimal so several approaches have been
proposed128,130–132 among which Farthest Point Sampling
(FPS),133 a greedy method that maximises diversity, or a
CUR decomposition125,134 of the feature matrix associated
with the training set, which minimizes the effect of the PP
on the kernel matrix, have allowed significant reductions
of the computational cost with minimal degradation of the
accuracy.118,129

ML algorithms include recipes to train their parame-
ters, e.g. Eq. (14), but they do not specify how to de-
termine hyperparameters such as the regularization σ for
GPR, the number of layers in an ANN and the cutoff ra-
dius rc in the power spectrum representation, which can
influence heavily the quality of the model. In the Bayesian
context these hyperparameters can be interpreted as priors
that should be inferred from our knowledge of the physi-
cal system,125 or thought of as parameters that need to be
optimized. In principle the best parameters should allow
for the lowest possible prediction error on all possible in-
puts. Given that one can only work on a finite-sized set
of references, the problem becomes to find the parame-
ters that best reproduce the available references and at the
same time generalize well to unknown inputs. The per-
formance of a model is measured by comparing the pre-
dicted values and the reference values with metrics such
as the mean absolute error (MAE) or the root mean square
error (RMSE). An effective technique to avoid overfitting
these parameters, i.e. specialize the model for the train-
ing set which leads to poor generalization performances,
is the so called k-fold cross-validation where the perfor-
mances are evaluated on several subsets of the training set
(see Hansen et al. 111 for more details). Cross validated
scores are more likely to match the generalization error
which is a good basis to rank models and determine the
optimal set of hyperparameters.135 Learning curves are an-
other standard diagnostic tool to characterize the perfor-
mance of ML models. From statistical theory, the error of
a given model decreases as a power-law with the size of the
training set.79 Figure 2 shows, on a logarithmic scale, three
learning curves for models trained on datasets of molecular
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Finally, the probabilistic nature of GPR also allows one to 
estimate the uncertainty associated with the prediction
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gle interpretable hyperparameter σ, and the solution for the
weights xn has the closed form

x = K−1y, (14)

where Knm = KTnTm + σ2δnm is the kernel matrix be-
tween the N training inputs and yn is the property associ-
ated with structure Tn; σ corresponds to an expected Gaus-
sian noise in the references y so it can account for small
discrepancies in the convergence of the electronic struc-
ture method that are often found across a training set. In
the language of kernel ridge regression, Eq. (14) can be
obtained by minimizing the loss

L(x) =
∑
n

|y(Tn)− yn|2 + σ2
∑
n

x2
n. (15)

It should be mentioned that GPR provides a simple ap-
proach to compute derivatives of the target properties with
respect to atomic positions, e.g. the force consistent with
the model, in which case y represents the PES of a config-
uration. Such derivatives are easily expressed in terms of
derivatives of the kernel, i.e.

∂y(Xi)

∂ri
=

N∑
n=1

∑
j∈Tn

xn
∂

∂ri
k(Xi, Tn,j). (16)

Derivatives can also be incorporated in the learning pro-
cedure,75,76,109,114,123,125 by including the discrepancy be-
tween reference and predicted values in the loss Eq. (15).
Building a symmetry-adapted GPR model for properties
that have a tensorial nature requires the construction of co-
variant kernels,54,55 that describe the correlations between
the spherically-covariant components of the target prop-
erty,

yµλ(A) =

N∑
n=1

λ∑
m=−λ

xnm [KATn ]
λ
mµ . (17)

For instance, a kernel which fulfills these symmetry re-
quirements can be constructed based on λ-SOAP fea-
tures,54

kλµµ′(X ,X �) =
∑
nn′ll′

〈
X (2)λµ

∣∣∣nn�ll�
〉〈

nn�ll�
∣∣∣X �(2)λµ

〉
.

(18)
Finally, the probabilistic nature of GPR also allows one to
estimate the uncertainty associated with the prediction

σy(A) = σ2 +KAA −KT
NAK

−1KNA. (19)

The drawback for such simplicity is the computational
cost associated with the training phase - which scales cu-
bically with the training set size - and the need to use the
full training set as a basis to perform predictions. To ad-
dress this issue, many approximations of the exact kernel
matrix have been proposed,126,127 among which the pro-
jected process (PP) approximation 126,128 has been shown
to be quite practical to include force references75,125 and
effective from the point of view of the cost and accuracy
of predictions.118,129 The PP method introduces M pseudo

inputs to approximate the GP prior which practically re-
duces the cost of training to the inversion of a M ×M ma-
trix, and ensures that predictions only require computing
kernels between the new configurations and the M pseudo
inputs:

yPP(A) = KT
MAK̃

−1KMNy,

σPP
y (A) = σ2 +KAA −KT

MAK
−1
MMKMA

+KT
MAK̃

−1KMA,

(20)

where K̃ = KMM + σ−2KT
NMKNM , KMM indicates

the kernel matrix between pseudo inputs, and KNM the
matrix between training points and pseudo inputs. For sim-
plicity, the pseudo inputs (or active points) can be chosen
directly from the training set and they represent a new basis
in which the regression is performed. To maximize the cost
reduction and the accuracy of the model, one needs to sam-
ple the active set carefully. Selecting randomly the active
inputs is far from optimal so several approaches have been
proposed128,130–132 among which Farthest Point Sampling
(FPS),133 a greedy method that maximises diversity, or a
CUR decomposition125,134 of the feature matrix associated
with the training set, which minimizes the effect of the PP
on the kernel matrix, have allowed significant reductions
of the computational cost with minimal degradation of the
accuracy.118,129

ML algorithms include recipes to train their parame-
ters, e.g. Eq. (14), but they do not specify how to de-
termine hyperparameters such as the regularization σ for
GPR, the number of layers in an ANN and the cutoff ra-
dius rc in the power spectrum representation, which can
influence heavily the quality of the model. In the Bayesian
context these hyperparameters can be interpreted as priors
that should be inferred from our knowledge of the physi-
cal system,125 or thought of as parameters that need to be
optimized. In principle the best parameters should allow
for the lowest possible prediction error on all possible in-
puts. Given that one can only work on a finite-sized set
of references, the problem becomes to find the parame-
ters that best reproduce the available references and at the
same time generalize well to unknown inputs. The per-
formance of a model is measured by comparing the pre-
dicted values and the reference values with metrics such
as the mean absolute error (MAE) or the root mean square
error (RMSE). An effective technique to avoid overfitting
these parameters, i.e. specialize the model for the train-
ing set which leads to poor generalization performances,
is the so called k-fold cross-validation where the perfor-
mances are evaluated on several subsets of the training set
(see Hansen et al. 111 for more details). Cross validated
scores are more likely to match the generalization error
which is a good basis to rank models and determine the
optimal set of hyperparameters.135 Learning curves are an-
other standard diagnostic tool to characterize the perfor-
mance of ML models. From statistical theory, the error of
a given model decreases as a power-law with the size of the
training set.79 Figure 2 shows, on a logarithmic scale, three
learning curves for models trained on datasets of molecular

(19)
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models that have a larger off-set but also steeper slopes (see Fig. 
4 for an example). Indeed, building a ‘good’ model with as few 
references as possible might be favored over a model that has a 
better learning power but poorer performances with few samples.

Even though learning curves and cross-validation proce-
dures can benchmark quantitatively the ability of a model to 
perform well in production, demonstrating the performance of 
a model on practical test cases is typically more compelling. For 
example, Fig. 3 shows how the ShiftML model for the 1H chem-
ical shifts[139] is able to identify the crystal structure observed 
experimentally with NMR spectroscopy of two molecular mate-
rials as well as GIPAW DFT, the reference method used to train 
it. In the better-established case of the construction of MLIPs, 
several recent works have started to compare systematically the 
ability of different schemes to reproduce ab initio energies and 
forces,[140] the short range interaction in the MB-pol water mod-
el,[65] the vibrational spectra of H

2
CO,[141] the radial and angular 

distribution functions of copper and silica and the equation of 
state of three binary alloys.[67] Overall these studies show that 
all of the models considered were able to reproduce observables 
within the expected accuracy of the underlying electronic struc-
ture reference. In light of the substantially equivalent asymp-
totic accuracy of different approaches, the preference for one 
MLIP over another depends more on practical considerations 
such as training data efficiency, computational cost, simplicity 
of use etc.

The ability of a ML model to reproduce the results of ref-
erence calculations on a validation/test set makes it possible 
to assess its overall quality, but it does not guarantee that the 
predictions are equally accurate. A reliable uncertainty estimate 
that provides an assessment of the model accuracy for a specific 
prediction is key to allow for a wider community of researchers 
to rely on ML models. A punctual quantification of ML uncer-
tainty is also useful as a criterion for the iterative improvement 
of a model’s training set with active learning,[142–145] as one 
would like to incorporate additional reference data in the regions 
that correspond to the least accurate predictions. Several tech-
niques such as GPR, Bayesian neural networks (BNN)[146,147] 
and ensemble models[148] have been developed to provide an 
estimate of the uncertainty associated with predictions. Model 
ensembles, which estimate uncertainty by performing multiple 

The drawback for such simplicity is the computational cost 
associated with the training phase – which scales cubically with 
the training set size – and the need to use the full training set as a 
basis to perform predictions. To address this issue, many approx-
imations of the exact kernel matrix have been proposed,[126,127] 
among which the projected process (PP) approximation[126,128] has 
been shown to be quite practical to include force references[75,125] 
and effective from the point of view of the cost and accuracy of 
predictions.[118,129] The PP method introduces M pseudo inputs 
to approximate the GP prior which practically reduces the cost 
of training to the inversion of a M × M matrix, and ensures that 
predictions only require computing kernels between the new con-
figurations and the M pseudo inputs:
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gle interpretable hyperparameter σ, and the solution for the
weights xn has the closed form

x = K−1y, (14)

where Knm = KTnTm + σ2δnm is the kernel matrix be-
tween the N training inputs and yn is the property associ-
ated with structure Tn; σ corresponds to an expected Gaus-
sian noise in the references y so it can account for small
discrepancies in the convergence of the electronic struc-
ture method that are often found across a training set. In
the language of kernel ridge regression, Eq. (14) can be
obtained by minimizing the loss

L(x) =
∑
n

|y(Tn)− yn|2 + σ2
∑
n

x2
n. (15)

It should be mentioned that GPR provides a simple ap-
proach to compute derivatives of the target properties with
respect to atomic positions, e.g. the force consistent with
the model, in which case y represents the PES of a config-
uration. Such derivatives are easily expressed in terms of
derivatives of the kernel, i.e.

∂y(Xi)

∂ri
=

N∑
n=1

∑
j∈Tn

xn
∂

∂ri
k(Xi, Tn,j). (16)

Derivatives can also be incorporated in the learning pro-
cedure,75,76,109,114,123,125 by including the discrepancy be-
tween reference and predicted values in the loss Eq. (15).
Building a symmetry-adapted GPR model for properties
that have a tensorial nature requires the construction of co-
variant kernels,54,55 that describe the correlations between
the spherically-covariant components of the target prop-
erty,

yµλ(A) =

N∑
n=1

λ∑
m=−λ

xnm [KATn ]
λ
mµ . (17)

For instance, a kernel which fulfills these symmetry re-
quirements can be constructed based on λ-SOAP fea-
tures,54
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Finally, the probabilistic nature of GPR also allows one to
estimate the uncertainty associated with the prediction

σy(A) = σ2 +KAA −KT
NAK

−1KNA. (19)

The drawback for such simplicity is the computational
cost associated with the training phase - which scales cu-
bically with the training set size - and the need to use the
full training set as a basis to perform predictions. To ad-
dress this issue, many approximations of the exact kernel
matrix have been proposed,126,127 among which the pro-
jected process (PP) approximation 126,128 has been shown
to be quite practical to include force references75,125 and
effective from the point of view of the cost and accuracy
of predictions.118,129 The PP method introduces M pseudo

inputs to approximate the GP prior which practically re-
duces the cost of training to the inversion of a M ×M ma-
trix, and ensures that predictions only require computing
kernels between the new configurations and the M pseudo
inputs:

yPP(A) = KT
MAK̃

−1KMNy,

σPP
y (A) = σ2 +KAA −KT

MAK
−1
MMKMA

+KT
MAK̃

−1KMA,

(20)

where K̃ = KMM + σ−2KT
NMKNM , KMM indicates

the kernel matrix between pseudo inputs, and KNM the
matrix between training points and pseudo inputs. For sim-
plicity, the pseudo inputs (or active points) can be chosen
directly from the training set and they represent a new basis
in which the regression is performed. To maximize the cost
reduction and the accuracy of the model, one needs to sam-
ple the active set carefully. Selecting randomly the active
inputs is far from optimal so several approaches have been
proposed128,130–132 among which Farthest Point Sampling
(FPS),133 a greedy method that maximises diversity, or a
CUR decomposition125,134 of the feature matrix associated
with the training set, which minimizes the effect of the PP
on the kernel matrix, have allowed significant reductions
of the computational cost with minimal degradation of the
accuracy.118,129

ML algorithms include recipes to train their parame-
ters, e.g. Eq. (14), but they do not specify how to de-
termine hyperparameters such as the regularization σ for
GPR, the number of layers in an ANN and the cutoff ra-
dius rc in the power spectrum representation, which can
influence heavily the quality of the model. In the Bayesian
context these hyperparameters can be interpreted as priors
that should be inferred from our knowledge of the physi-
cal system,125 or thought of as parameters that need to be
optimized. In principle the best parameters should allow
for the lowest possible prediction error on all possible in-
puts. Given that one can only work on a finite-sized set
of references, the problem becomes to find the parame-
ters that best reproduce the available references and at the
same time generalize well to unknown inputs. The per-
formance of a model is measured by comparing the pre-
dicted values and the reference values with metrics such
as the mean absolute error (MAE) or the root mean square
error (RMSE). An effective technique to avoid overfitting
these parameters, i.e. specialize the model for the train-
ing set which leads to poor generalization performances,
is the so called k-fold cross-validation where the perfor-
mances are evaluated on several subsets of the training set
(see Hansen et al. 111 for more details). Cross validated
scores are more likely to match the generalization error
which is a good basis to rank models and determine the
optimal set of hyperparameters.135 Learning curves are an-
other standard diagnostic tool to characterize the perfor-
mance of ML models. From statistical theory, the error of
a given model decreases as a power-law with the size of the
training set.79 Figure 2 shows, on a logarithmic scale, three
learning curves for models trained on datasets of molecular

(20)

where 
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 indicates the kernel 
matrix between pseudo inputs and K

NM
 the matrix between train-

ing points and pseudo inputs. For simplicity, the pseudo inputs 
(or active points) can be chosen directly from the training set and 
they represent a new basis in which the regression is performed. 
To maximize the cost reduction and the accuracy of the model, 
one needs to sample the active set carefully. Selecting randomly 
the active inputs is far from optimal so several approaches have 
been proposed[128,130–132] among which Farthest Point Sampling 
(FPS),[133] a greedy method that maximizes diversity, or a CUR 
decomposition[125,134] of the feature matrix associated with the 
training set, which minimizes the effect of the PP on the kernel 
matrix, have allowed significant reductions of the computational 
cost with minimal degradation of the accuracy.[118,129]

ML algorithms include recipes to train their parameters, e.g. 
Eqn. (14), but they do not specify how to determine hyperparam-
eters such as the regularization σ for GPR, the number of layers 
in an ANN and the cutoff radius r

c
 in the power spectrum repre-

sentation, which can influence heavily the quality of the model. In 
the Bayesian context these hyperparameters can be interpreted as 
priors that should be inferred from our knowledge of the physical 
system,[125] or thought of as parameters that need to be optimized. 
In principle the best parameters should allow for the lowest pos-
sible prediction error on all possible inputs. Given that one can 
only work on a finite-sized set of references, the problem becomes 
to find the parameters that best reproduce the available references 
and at the same time generalize well to unknown inputs. The per-
formance of a model is measured by comparing the predicted val-
ues and the reference values with metrics such as the mean abso-
lute error (MAE) or the root mean square error (RMSE). An effec-
tive technique to avoid overfitting these parameters, i.e. specialize 
the model for the training set which leads to poor generalization 
performances, is the so called k-fold cross-validation where the 
performances are evaluated on several subsets of the training set 
(see Hansen et al.[111] for more details). Cross validated scores 
are more likely to match the generalization error which is a good 
basis to rank models and determine the optimal set of hyperpa-
rameters.[135] Learning curves are another standard diagnostic tool 
to characterize the performance of ML models. From statistical 
theory, the error of a given model decreases as a power-law with 
the size of the training set.[79] Fig. 2 shows, on a logarithmic scale, 
three learning curves for models trained on datasets of molecular 
crystal polymorphs to reproduce their lattice energies. The GPR 
model performances vary with the considered training set because 
the learning rates (slopes of the curves) and off-sets are differ-
ent. These curves are very useful because they help differentiate 
between models that have a small offset and learning rates with 

Fig. 2. Learning curves for the lattice energy predictions of pentacene, 
5A and 5B datasets, plotted on on a logarithmic scale. For each train-
ing sample size, models are built several times on random subsets of 
the full training set and predictions are made on a fixed-size random 
subset of the training set. The test MAE and error bars are, respectively, 
average and standard deviation over the random subset predictions. All 
hyper-parameters of our ML model are fixed except for the regulariza-
tion parameter σ in the GPR model which is optimized on the fly at each 
training. Adapted from ref. [15].
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where u(r
ij
) is a flexible radial scaling that reduces the weight of 

atoms in the far field. The prediction accuracies of the mixture 
of representations and radial scaling model are shown to be very 
similar after independent optimization of the model parameters 
with cross-validation. This example showcases how incorporating 
physical insights about the target property into the representation 
helps in building more effective models.

Another scheme by which the atom-density framework can be 
generalized to reflect structure–property relations builds upon the 
similarities in the behavior of different chemical elements, which 
is reflected in the well-known trends observed along the periodic 
table. Discarding such knowledge by considering each chemical 
species as completely different seems wasteful and even impracti-
cal when working on large subsets of the periodic table.[66,99,158] 
Following this intuition, De et al.[14] formulated an ‘alchemical’ 
kernel to supplement the SOAP power spectrum with the correla-
tions between chemical species based on Pauling electronegativ-
ity. With the same mindset a distance across the periodic table has 
been proposed to learn properties across chemical composition 
space in the FCHL representation.[44]

Rather than using elemental properties to define a priori the 
similarity between elements, the optimization of the representa-
tion of chemical space can be set as an additional objective of 
the ML algorithm. Then, the chemical features that characterize 
each element are learnt directly according to the dataset and tar-
get property at hand. Several applications of ANN to model the 
PES of molecules or solids use the stoichiometry as an input and 
the resulting features tend to match well with the structure of the 
periodic table.[96,100,159] An alternating least square optimization 
procedure has been proposed to achieve similar results within 
the GPR framework.[52] It effectively corresponds to finding the 
best projection of the abstract elemental kets α〉 on an ‘elemental 
feature’ basis J〉, i.e. an embedding space, of dimension d

J
 by 

optimizing the coefficients uαJ
 = 〈Jα〉 within the modified power 

spectrum representation

8

FIG. 3. Structure determination for cocaine (a) and AZD8329 (b) obtained by comparing calculated and experimental 1H chemical
shifts for the most stable structures obtained with CSP. The total RMSE between experimentally measured shifts (NMR spectroscopy)
and shifts calculated with GIPAW136,137 (blue) and ShiftML21 (red) is shown for every hypothetical structure. The shaded area represents
an estimation of the confidence intervals for the total RMSE computed with GIPAW. The candidates that have RMSEs within this range
are the most likely observed crystal structures using a chemical shift-based solid-state NMR crystallography protocol.138 Adapted from
Ref. 21.

spheres and decreasing weights, outperforming the best
individual representation model. The decaying weights
assigned to representations with larger cutoffs reflect the
multi-scale nature of the interactions that affect the val-
ues of chemical shieldings and of the molecular cohesive
energy, which are often determined predominantly by the
closest neighboring atoms and depend less markedly on
atoms that are farther away. To confirm this intuition
Willatt et al. 52 compare a similar mixture of representa-
tion with a radially scaled representations to model the
formation energy of small molecules which corresponds
to Eq. (4) with

�αr|Xi�=
∑

j∈Xi,α

N2σ2

(
r− rij

)
fc(rij)u(rij), (22)

where u(rij) is a flexible radial scaling that reduces the
weight of atoms in the far field. The prediction accuracies
of the mixture of representations and radial scaling model
are shown to be very similar after independent optimisa-
tion of the model parameters with cross-validation. This
example showcases how incorporating physical insights
about the target property into the representation helps in
building more effective models.

Another scheme by which the atom-density framework
can be generalized to reflect structure-property relations
builds upon the similarities in the behavior of different
chemical elements, which is reflected in the well-known
trends observed along the periodic table. Discarding such
knowledge by considering each chemical species as com-
pletely different seems wasteful and even impractical when

working on large subsets of the periodic table.66,99,158 Fol-
lowing this intuition, De et al. 14 formulated an ‘alchemi-
cal’ kernel to supplement the SOAP power spectrum with
the correlations between chemical species based on Paul-
ing electronegativity. With the same mindset a distance
across the periodic table has been proposed to learn prop-
erties across chemical composition space in the FCHL rep-
resentation.44

Rather than using elemental properties to define a pri-
ori the similarity between elements, the optimization of
the representation of chemical space can be set as an addi-
tional objective of the ML algorithm. Then, the chemical
features that characterize each element are learnt directly
according to the dataset and target property at hand. Sev-
eral applications of ANN to model the PES of molecules or
solids use the stoichiometry as an input and the resulting
features tend to match well with the structure of the pe-
riodic table.96,100,159 An alternating least square optimiza-
tion procedure has been proposed to achieve similar results
within the GPR framework.52 It effectively corresponds to
finding the best projection of the abstract elemental kets
|α� on an “elemental feature” basis |J�, i.e. an embed-
ding space, of dimension dJ by optimizing the coefficients
uαJ = �J |α� within the modified power spectrum repre-
sentation
∑
αα′

uαJuα′J ′
∑
m

(−1)m �αnlm|Xi� �α�n�l −m|Xi� .
(23)

In Fig. 4, the learning curves of several chemically com-
pressed models are compared with a baseline model, a

(23)

In Fig. 4, the learning curves of several chemically compressed 
models are compared with a baseline model, a compound model 
and the model taken from ref. [44] for a chemically diverse bench-
mark dataset. The compressed models tend to saturate because 

predictions for each input, have been quite popular[129,142,149,150] 
because of their simplicity and flexibility. The resampling ap-
proach in particular[151–154] is based on the training of a family 
of models, N

r
 different subsets of the training data. It produces a 

non-parametric estimate of the predictions distribution 
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whose moments are given by
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crystal polymorphs to reproduce their lattice energies. The
GPR model performances vary with the considered train-
ing set because the learning rates (slopes of the curves)
and off-sets are different. These curves are very useful be-
cause they help differentiating between models that have
a small offset and learning rates with models that have a
larger off-set but also steeper slopes (see Fig. 4 for an ex-
ample). Indeed, building a ‘good’ model with as few ref-
erences as possible might be favored over a model that has
a better learning power but poorer performances with few
samples.

FIG. 2. Learning curves for the lattice energy predictions of pen-
tacene, 5A and 5B datasets, plotted on on a logarithmic scale.
For each training sample size, models are built several times on
random subsets of the full training set and predictions are made
on a fixed-size random subset of the training set. The test MAE
and error bars are, respectively, average and standard deviation
over the random subset predictions. All hyper-parameters of our
ML model are fixed except for the regularization parameter σ in
the GPR model which is optimized on the fly at each training.
Adapted from Ref. 15.

Even though learning curves and cross-validation pro-
cedures can benchmark quantitatively the ability of a
model to perform well in production, demonstrating the
performance of a model on practical test cases is typi-
cally more compelling. For example, Fig. 3 shows how
the ShiftML model for the 1H chemical shifts139 is able to
identify the crystal structure observed experimentally with
NMR spectroscopy of two molecular materials as well as
GIPAW DFT, the reference method used to train it. In the
better-established case of the construction of MLIPs, sev-
eral recent works have started to compare systematically
the ability of different schemes to reproduce ab initio en-
ergies and forces,140 the short range interaction in the MB-
pol water model,65 the vibrational spectra of H2CO,141 the
radial and angular distribution functions of copper and sil-
ica and the equation of state of three binary alloys.67 Over-
all these studies show that all of the models considered
were able to reproduce observables within the expected ac-
curacy of the underlying electronic structure reference. In
light of the substantially equivalent asymptotic accuracy
of different approaches, the preference for one MLIP over
another depends more on practical considerations such as
training data efficiency, computational cost, simplicity of

use, etc.
The ability of a ML model to reproduce the results

of reference calculations on a validation/test set makes it
possible to assess its overall quality, but it does not guar-
antee that the predictions are equally accurate. A reli-
able uncertainty estimate that provides an assessment of
the model accuracy for a specific prediction is key to al-
low for a wider community of researchers to rely on ML
models. A punctual quantification of ML uncertainty is
also useful as a criterion for the iterative improvement of
a model’s training set with active learning142–145, as one
would like to incorporate additional reference data in the
regions that correspond to the least accurate predictions.
Several techniques such as GPR, Bayesian neural networks
(BNN)146,147 and ensemble models148 have been developed
to provide an estimate of the uncertainty associated with
predictions. Model ensembles, which estimate uncertainty
by performing multiple predictions for each input, have
been quite popular129,142,149,150 because of their simplic-
ity and flexibility. The resampling approach in particu-
lar151–154 is based on the training of a family of models,
Nr different subsets of the training data. It produces a non-
parametric estimate of the predictions distribution P (y|A)
whose moments are given by

ȳ(A) =
1

Nr

∑
i

y(i)(A)

σ̄2(A) =
1

Nr − 1

∑
i

[y(i)(A)− ȳ(A)]2,

(21)

where y(i)(A) is the prediction of the ith resampled model.
While the training cost is increased Nr times, uncertainty
predictions come with the estimate of y(A) at essentially
no extra cost for GPR – which is typically dominated by
the evaluation of the kernel. In the case of ANN, an ensem-
ble of models provides a practical way of estimating the
uncertainty, although in this case the overhead can be sig-
nificant, and linear in Nr. To avoid such overhead, as well
as the increased training cost, dedicated schemes that avoid
training multiple models have been developed specifically
for ANN.155–157

IV. OPTIMIZING THE REPRESENTATIONS

As discussed previously, representations of an atomic
structure for atomic scale simulations should provide a
concise but complete description of its structure and com-
position. Ensuring that these features follow the basic
symmetries of the target property is an essential condi-
tion, but does not guarantee optimal performance of the
resulting model. One way to optimize a model for a given
regression task is to consider multiple kinds of represen-
tations and build a weighted combination, and treat the
weights as hyperparameters. This line of reasoning has
been used to optimize the performance of a ML scheme to
estimate the formation energy of small molecules84 and the
chemical shieldings in molecular crystals.21 Both applica-
tions compound local descriptions with increasing cutoff

(21)

where 

𝑘𝑘 𝜒𝜒 ,𝜒𝜒 Symb ee

𝑘𝑘 𝜒𝜒 ,𝜒𝜒 = 𝜒𝜒 𝜒𝜒 Symb ff

𝐾𝐾 = 𝐾𝐾𝒯𝒯𝒯𝒯 + 𝜎𝜎𝛿𝛿 Symb gg

𝒯𝒯;𝜎𝜎 Symb hh

𝔂𝔂 Symb ii

𝑲𝑲 = 𝑲𝑲 + 𝜎𝜎𝑲𝑲 𝑲𝑲,𝑲𝑲 Symb jj

𝑃𝑃 𝑦𝑦 𝒜𝒜 Symb kk

𝑦𝑦()(𝒜𝒜) Symb ll

𝒯𝒯 Symb mm

𝔂𝔂 Symb nn

 is the prediction of the ith resampled model.
While the training cost is increased N

r
 times, uncertainty pre-

dictions come with the estimate of 

𝜒𝜒()λµñ Symb u

𝑌𝑌 Symb v

𝑆𝑆𝑆𝑆 (3) Symb w

𝑦𝑦 = 𝐹𝐹 𝒜𝒜 Symb x

𝒜𝒜 , 𝑦𝑦 Symb y

𝑦𝑦 𝐫𝐫 ,𝛼𝛼 Symb z

𝑦𝑦 𝒜𝒜 Symb aa

𝑘𝑘 𝜒𝜒,𝜒𝜒𝜒 Symb bb

𝒯𝒯 Symb cc

𝐾𝐾𝒜𝒜𝒯𝒯 = ∑𝒜𝒜∑𝒯𝒯𝑘𝑘(𝜒𝜒 ,𝒯𝒯,) Symb dd

 at essentially no extra 
cost for GPR – which is typically dominated by the evaluation 
of the kernel. In the case of ANN, an ensemble of models pro-
vides a practical way of estimating the uncertainty, although in 
this case the overhead can be significant, and linear in N

r
. To avoid 

such overhead, as well as the increased training cost, dedicated 
schemes that avoid training multiple models have been developed 
specifically for ANN.[155–157]

4. Optimizing the Representations
As discussed previously, representations of an atomic struc-

ture for atomic scale simulations should provide a concise but 
complete description of its structure and composition. Ensuring 
that these features follow the basic symmetries of the target prop-
erty is an essential condition, but does not guarantee optimal per-
formance of the resulting model. One way to optimize a model for 
a given regression task is to consider multiple kinds of representa-
tions and build a weighted combination, and treat the weights as 
hyperparameters. This line of reasoning has been used to optimize 
the performance of a ML scheme to estimate the formation energy 
of small molecules[84] and the chemical shieldings in molecular 
crystals.[21] Both applications compound local descriptions with 
increasing cut-off spheres and decreasing weights, outperforming 
the best individual representation model. The decaying weights 
assigned to representations with larger cutoffs reflect the multi-
scale nature of the interactions that affect the values of chemical 
shieldings and of the molecular cohesive energy, which are often 
determined predominantly by the closest neighboring atoms and 
depend less markedly on atoms that are farther away. To confirm 
this intuition Willatt et al.[52] compare a similar mixture of repre-
sentation with radially scaled representations to model the forma-
tion energy of small molecules which corresponds to Eqn. (4) with

Fig. 3. Structure determination for cocaine (a) and AZD8329 (b) obtained by comparing calculated and experimental 1H chemical shifts for the 
most stable structures obtained with CSP. The total RMSE between experimentally measured shifts (NMR spectroscopy) and shifts calculated with 
GIPAW[136,137] (blue) and ShiftML[21] (red) is shown for every hypothetical structure. The shaded area represents an estimation of the confidence inter-
vals for the total RMSE computed with GIPAW. The candidates that have RMSEs within this range are the most likely observed crystal structures 
using a chemical shift-based solid-state NMR crystallography protocol.[138] Adapted from ref. [21].
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the periodic table group. Moreover, the spatial arrangement of the 
two-dimensional projection appears well correlated with the elec-
tronegativity. Such data-driven techniques are powerful since they 
adapt to the system and target property but this also comes at an 
increased computational cost. Furthermore, the optimized chemi-
cal space might not be transferable across classes of systems, or 
for the learning of different properties.

Besides data efficiency and the accuracy of predictions, nu-
merical efficiency is also an essential criterion for a representa-
tion, since it affects the length and time scales of problems that 
it can be used with. For example Caro[64] proposed an approxi-
mation to compute the SOAP power spectrum which results in 
a clear speedup with a marginal loss of accuracy. Similarly, the 
FCHL representation has been reformulated[123] using much sim-
pler functional forms increasing the numerical efficiency without 
impacting much the accuracy of the model. In addition to improve 
the cost of computing the feature vectors associated with a given 
representation, computational effort can also be cut by reducing 
the number of features that need to be computed and used as in-
put of the ML model. ML schemes such as the CUR decomposi-
tion and the FPS scheme have been used to select a subset of the 
components of the power spectrum representation, and identify 
the most important parameters for Behler-Parrinello symmetry 
functions, obtaining simpler and more efficient models that were 
equivalent in performance to the full models.[134]

In closing, let us note that the Dirac notation that we have 
used to introduce the symmetrized atom-density framework also 
makes it possible to formulate many existing optimizations as the 
application of a linear operator that preserves the symmetries of 
the representation.[58] For example a rotationally invariant opera-
tor that acts on the chemical part of a representation has matrix 
elements
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compound model and the model taken from Ref. 44 for
a chemically diverse benchmark dataset. The compressed
models tend to saturate because the low-dimensional “ele-
mental features” are not sufficiently descriptive to account
for the differences between the 39 elements in the dataset.
Nevertheless, in the limit of small training set size the
compressed models (with dJ = 2, 3, 4) clearly outperform
the baseline model. The compound model (grey line) that
combines both the baseline representation and the repre-
sentation with dJ = 4 avoids the saturation of the learn-
ing and retains the improved learning for small training set
sizes.

After optimization, the embedding space contains in-
formation on the similarity between elements with respect
to the target property. The “elemental features” obtained
on a dataset of perovskites (62 different elements) and a
model trained to predict their formation energy is shown
in Fig. 5 for dJ = 2. The resulting projection of the
chemical elements evokes their positions in the periodic
table which is highlighted by the coloring according to the
periodic table group. Moreover, the spatial arrangement
of the two dimensional projection appears well correlated
with the electronegativity. Such data-driven techniques are
powerful since they adapt to the system and target prop-
erty but this also comes at an increased computational cost.
Furthermore, the optimized chemical space might not be
transferable across classes of systems, or for the learning
of different properties.
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FIG. 4. Learning curves for the formation energy of the elpaso-
lite crystals database using GPR.112 The standard power spectrum
curve is shown in black, the best curve from Ref. 44 is shown
in bright red and the optimized curves are shown in dark red
(dJ = 1), purple (dJ = 2) and blue (dJ = 4). For each of these
models, the kernel was constructed with rc = 5Å, nmax = 12
radial basis functions and lmax = 9 non-degenerate spherical
harmonics. The compound model (shown in grey) combines
three standard power spectrum representations and one chemi-
cally compressed representation (dJ = 4, rc = 5) in the ratio
4 : 3 : 1 : 220. Adapted from Ref. 52.

Besides data efficiency and the accuracy of predictions,
numerical efficiency is also an essential criterion for a rep-

resentation, since it affects the length and time scales of
problems that it can be used with. For example Caro 64 pro-
posed an approximation to compute the SOAP power spec-
trum which results in a clear speedup with a marginal loss
of accuracy. Similarly, the FCHL representation has been
reformulated123 using much simpler functional forms in-
creasing the numerical efficiency without impacting much
the accuracy of the model. In addition to improve the cost
of computing the feature vectors associated with a given
representation, computational effort can also be cut by re-
ducing the number of features that need to be computed
and used as input of the ML model. ML schemes such as
the CUR decomposition and the FPS scheme have been
used to select a subset of the components of the power
spectrum representation, and identify the most important
parameters for Behler-Parrinello symmetry functions, ob-
taining simpler and more efficient models that were equiv-
alent in performance to the full models.134

In closing, let us note that the Dirac notation that
we have used to introduce the symmetrized atom-density
framework also makes it possible to formulate many ex-
isting optimizations as the application of a linear operator
that preserves the symmetries of the representation.58 For
example a rotationally invariant operator that acts on the
chemical part of a representation has matrix elements

�αnlm|Û |α′n′l′m′� = δnn′δll′δmm′ �α|Û |α′� , (24)

when written in the same basis of radial functions and
spherical harmonics used in Eq. (8). A low-rank expan-
sion of such operator can be written as

Û ≈
∑
Jα

uJα |J��α| , (25)

corresponding to a transformation of the chemical space
into low-dimensional basis |J�. Applying such an opera-
tor to the power spectrum representation leads directly to
Eq. (23). Similar operators can be formulated resulting
in the geometrical scaling introduced by Faber et al. 44 or
in the radial scaling of Eq. (22). The atom density based
framework is helpful to rationalize ad hoc attempts to im-
prove representations, generalize them and formulate rig-
orously more complex modifications that would, for in-
stance, couple the geometry and the composition channels.

V. CONCLUSION

In the last decade ML techniques have demonstrated
their utility in the context of atomistic simulations, both by
automating the post-processing of large amounts of data,
e.g. molecular dynamics trajectories, and by improving the
efficiency and/or the accuracy of the prediction of atomic
scale properties – most notably through the construction
of machine-learned interatomic potentials. Some consen-
sus is starting to develop around the features of an effective
ML model, e.g. the utility of incorporating symmetries and
physical principles in the construction of representations of
atomic neighborhoods, the importance of active-learning

(24)

when written in the same basis of radial functions and spherical 
harmonics used in Eqn. (8). A low-rank expansion of such opera-
tor can be written as
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compound model and the model taken from Ref. 44 for
a chemically diverse benchmark dataset. The compressed
models tend to saturate because the low-dimensional “ele-
mental features” are not sufficiently descriptive to account
for the differences between the 39 elements in the dataset.
Nevertheless, in the limit of small training set size the
compressed models (with dJ = 2, 3, 4) clearly outperform
the baseline model. The compound model (grey line) that
combines both the baseline representation and the repre-
sentation with dJ = 4 avoids the saturation of the learn-
ing and retains the improved learning for small training set
sizes.

After optimization, the embedding space contains in-
formation on the similarity between elements with respect
to the target property. The “elemental features” obtained
on a dataset of perovskites (62 different elements) and a
model trained to predict their formation energy is shown
in Fig. 5 for dJ = 2. The resulting projection of the
chemical elements evokes their positions in the periodic
table which is highlighted by the coloring according to the
periodic table group. Moreover, the spatial arrangement
of the two dimensional projection appears well correlated
with the electronegativity. Such data-driven techniques are
powerful since they adapt to the system and target prop-
erty but this also comes at an increased computational cost.
Furthermore, the optimized chemical space might not be
transferable across classes of systems, or for the learning
of different properties.
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FIG. 4. Learning curves for the formation energy of the elpaso-
lite crystals database using GPR.112 The standard power spectrum
curve is shown in black, the best curve from Ref. 44 is shown
in bright red and the optimized curves are shown in dark red
(dJ = 1), purple (dJ = 2) and blue (dJ = 4). For each of these
models, the kernel was constructed with rc = 5Å, nmax = 12
radial basis functions and lmax = 9 non-degenerate spherical
harmonics. The compound model (shown in grey) combines
three standard power spectrum representations and one chemi-
cally compressed representation (dJ = 4, rc = 5) in the ratio
4 : 3 : 1 : 220. Adapted from Ref. 52.

Besides data efficiency and the accuracy of predictions,
numerical efficiency is also an essential criterion for a rep-

resentation, since it affects the length and time scales of
problems that it can be used with. For example Caro 64 pro-
posed an approximation to compute the SOAP power spec-
trum which results in a clear speedup with a marginal loss
of accuracy. Similarly, the FCHL representation has been
reformulated123 using much simpler functional forms in-
creasing the numerical efficiency without impacting much
the accuracy of the model. In addition to improve the cost
of computing the feature vectors associated with a given
representation, computational effort can also be cut by re-
ducing the number of features that need to be computed
and used as input of the ML model. ML schemes such as
the CUR decomposition and the FPS scheme have been
used to select a subset of the components of the power
spectrum representation, and identify the most important
parameters for Behler-Parrinello symmetry functions, ob-
taining simpler and more efficient models that were equiv-
alent in performance to the full models.134

In closing, let us note that the Dirac notation that
we have used to introduce the symmetrized atom-density
framework also makes it possible to formulate many ex-
isting optimizations as the application of a linear operator
that preserves the symmetries of the representation.58 For
example a rotationally invariant operator that acts on the
chemical part of a representation has matrix elements

�αnlm|Û |α′n′l′m′� = δnn′δll′δmm′ �α|Û |α′� , (24)

when written in the same basis of radial functions and
spherical harmonics used in Eq. (8). A low-rank expan-
sion of such operator can be written as

Û ≈
∑
Jα

uJα |J��α| , (25)

corresponding to a transformation of the chemical space
into low-dimensional basis |J�. Applying such an opera-
tor to the power spectrum representation leads directly to
Eq. (23). Similar operators can be formulated resulting
in the geometrical scaling introduced by Faber et al. 44 or
in the radial scaling of Eq. (22). The atom density based
framework is helpful to rationalize ad hoc attempts to im-
prove representations, generalize them and formulate rig-
orously more complex modifications that would, for in-
stance, couple the geometry and the composition channels.

V. CONCLUSION

In the last decade ML techniques have demonstrated
their utility in the context of atomistic simulations, both by
automating the post-processing of large amounts of data,
e.g. molecular dynamics trajectories, and by improving the
efficiency and/or the accuracy of the prediction of atomic
scale properties – most notably through the construction
of machine-learned interatomic potentials. Some consen-
sus is starting to develop around the features of an effective
ML model, e.g. the utility of incorporating symmetries and
physical principles in the construction of representations of
atomic neighborhoods, the importance of active-learning

(25)

the low-dimensional ‘elemental features’ are not sufficiently de-
scriptive to account for the differences between the 39 elements 
in the dataset. Nevertheless, in the limit of small training set size 
the compressed models (with d

J
 = 2, 3, 4) clearly outperform the 

baseline model. The compound model (grey line) that combines 
both the baseline representation and the representation with d
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 = 

4 avoids the saturation of the learning and retains the improved 
learning for small training set sizes.

After optimization, the embedding space contains informa-
tion on the similarity between elements with respect to the tar-
get property. The ‘elemental features’ obtained on a dataset of 
perovskites (62 different elements) and a model trained to predict 
their formation energy is shown in Fig. 5 for d
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projection of the chemical elements evokes their positions in the 
periodic table which is highlighted by the coloring according to 
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Fig. 4. Learning curves for the formation energy of the elpasolite crystals 
database using GPR.[112] The standard power spectrum curve is shown 
in black, the best curve from ref. [44] is shown in bright red and the op-
timized curves are shown in dark red (dJ = 1), purple (dJ = 2) and blue (dJ 
= 4). For each of these models, the kernel was constructed with rc = 5 Å, 
nmax = 12 radial basis functions and lmax = 9 non-degenerate spherical 
harmonics. The compound model (shown in grey) combines three stan-
dard power spectrum representations and one chemically compressed 
representation (dJ = 4, rc = 5) in the ratio 4 : 3 : 1 : 220. Adapted from  
ref. [52].
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