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Abstract: The synthesis of organic compounds, which is central to many areas such as drug discovery, mate-
rial synthesis and biomolecular chemistry, requires chemists to have years of knowledge and experience. The 
development of technologies with the potential to learn and support experts in the design of synthetic routes is 
a half-century-old challenge with an interesting revival in the last decade. In fact, the renewed interest in artifi-
cial intelligence (AI), driven mainly by data availability, is profoundly changing the landscape of computer-aided 
chemical reaction prediction and retrosynthetic analysis. In this article, we briefly review different approaches 
to predict forward reactions and retrosynthesis, with a strong focus on data-driven ones. While data-driven 
technologies still need to demonstrate their full potential compared to expert rule-based systems in synthetic 
chemistry, the acceleration experienced in the last decade is a convincing sign that where we use software today, 
there will be AI tomorrow. This revolution will help and empower bench chemists, driving the transformation of 
chemistry towards a high-tech business over the next decades.
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1. Introduction
Mastering synthetic organic chemistry is a challenge that in-

volves years of knowledge and practical experience composed of 
heuristics and hard rules. Over the past 50 years, there have been 
many attempts to help bench-chemists with the design of synthet-
ic routes[1] but, with few exceptions based on expert systems,[2] 
most of the contributions did not yield any practical usage. In the 
last years, AI algorithms applied to organic chemistry problems 
demonstrated the great value of data-driven technologies, easing 
the task of constructing highly accurate predictive models. With 
the current computational power, it takes only a few weeks to 
build a fully data-driven prediction model compared to the multi-
year efforts to build humanly curated rule-based expert systems.[2]

AI algorithms use digital data to encode the chemical rules 
used to make new predictions in computers. For example, com-
puters can be trained on a set of known chemical reactions to 
allow them to predict the outcomes of new reactions with high 
accuracy. [3,4] While many factors have contributed to the recent 
rise of data-driven methods in the field of organic synthesis, the 
main pillars are algorithmic developments, the availability of 
large data sets and broad accessibility to larger computational 
resources. The emerging methods range from the prediction of 
a chemical reaction[3] to chemical reactivity prediction,[5] from 
retrosynthesis[6] to reaction condition optimisation[7] all the way 
to yield predictions.[8] In this article, we will focus on the develop-
ments of reaction prediction and retrosynthesis (see Fig. 1).

2. Reaction Prediction
Predicting the outcome of chemical reactions is a fundamen-

tal knowledge upon which modern chemistry is built. It is an 
essential part of the retrosynthetic analysis used in many fields 
like drug design and material synthesis. Determining the prod-
ucts of simple reactions may be a straightforward problem for a 
domain expert with decades of synthetic chemistry experience. 
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2.2 Quantum Mechanics-based Systems
Quantum Mechanical (QM) approaches are theoretically the 

apt method to tackle the problem of reaction prediction. They rely 
on modelling the electron distribution over the orbitals of the dif-
ferent atoms in the reaction and simulating the interaction among 
them to determine the possible orbital transformations that might 
take place and lead to bond breakage/formation. Even though first 
principle QM works well for relatively small systems (up to few 
hundred atoms, depending on the algorithmic complexity), its ap-
plication to larger systems is still computationally challenging. 

But in the case of more complex reaction schemes, the outcome 
may be far from trivial as the nature of the reactants, reagents 
and physical conditions may strongly affect the formation of one 
product or another. The complexity of these inputs poses a seri-
ous problem when human experts try to rationalise the reactivity 
problem with a set of concise rules. This was the reason why 
the concept of automating chemical reaction prediction with the 
aid of computer algorithms became very popular a few decades 
ago.[1,9,10] Until the recent dawn of AI, the preferred computer-
based methods were built around the notion of rule-based expert 
systems[11] and quantum mechanical simulations.[12] With only 
one work[7] reporting on the performance of AI algorithms ver-
sus humans in the domain of forward chemical reaction predic-
tion and because of its limited statistical significance, it is not 
clear whether chemical reaction prediction systems today can 
truly beat humans. Nonetheless, the efforts to reach this goal are 
progressing at a fast pace.

2.1 Rule-based Expert Systems
Initial computer programs, carrying out rule-based systems, 

were made of hand-coded graph rearrangement patterns fitting a 
certain template to describe a reaction in its most abstract form (see 
Fig. 2). The candidate products of a reaction were generated from 
the rules and ranked according to their likelihood. One of the ear-
lier implementations of such a system is the ‘Computer-Assisted 
Mechanistic Evaluation of Organic Reactions’ (CAMEO),[11] 
which predicts the products when given the reactants and condi-
tions. In CAMEO, each reaction was assessed with the knowledge 
of reaction mechanisms through identifying the centres of reactive 
electrophiles and nucleophiles. A modern system, belonging to 
the same family of rule-based systems, is Chematica, currently 
known as Synthia.[2] Chematica has around 85’000 reaction tem-
plates internally codified, thus achieving a state-of-the-art level 
of accuracy for forward prediction and retrosynthesis. One of the 
major limitations of Chematica is the time it takes to compile new 
reaction templates and maintain the database. To add an entry 
into the existing database, one must make sure that none of the 
other rules invalidates itself, which makes the approach less scal-
able. Also, these systems predict reactions based on the overall 
chemical transformation and individual steps are not taken into 
consideration, thereby ignoring relevant chemistry.

5-Bromo-2-methoxypyridine

productreaction prediction

retrosynthesis

precursors

Bromination (10.1.1) - US20120088764A1

O-methylation (1.7.14) - US20150210671A1

SNAr ether synthesis (1.7.11) - US05922742A

Fig. 1. Reaction prediction and retrosynthesis. Highlighted are the fragments that structurally contribute to the product.

Fig. 2. Procedure of extracting reaction rules for the formation of an es-
ter from reactions of a primary alcohol with an acyl group.
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ically agnostic and does not distinguish between the reactants and 
the reagents/solvents in the precursors. Schwaller et al.[4] reported 
a top-1 accuracy of over 90% and made the corresponding trained 
model available in the cloud through the IBM RXN platform.[28] 
Since August 2018, the platform has been used by more than 7000 
registered users/chemists, who performed more than 85’000 reac-
tion predictions. The model services can also be accessed through 
an API. Recently, the team deployed a synthesis route generation 
framework that uses a transformer-based retrosynthetic model.[29] 
We describe the current status of synthesis route prediction and 
data-driven retrosynthetic models in the next section.

CC#N.O=C1CCC(=O)N1Br . 
COC(=O)c1nccnc1N >> 
COC(=O)c1nc(Br)cnc1N

3. Retrosynthesis
Retrosynthesis is basically the reverse problem of reaction 

prediction. The target molecule can be thought of as a recursive 
combination of reactants by disconnecting (breaking) certain 
bonds, transforming them into other species (intermediates) and 
using different chemical strategies until one arrives at commer-
cially available chemicals. The efforts to use computers for this 
task began in the 1960s[30] with the goal of reducing the workload 
for chemists and providing them with a deeper situational aware-
ness of the multitude of possible disconnection strategies that may 
lead to better and more economically advantageous solutions. 

3.1 Template-based Models
Reaction mechanisms, structural identities and chemical 

group reactivities were the metrics on which early similarity/tem-
plate-based models relied. One such tool is LHASA (Logic and 
Heuristics Applied to Synthetic Analysis),[1] which creates a syn-
thesis tree starting with the desired product and leading to small, 
much simpler molecules. More recent template-based methods 
use neural networks[27,31] or molecular similarity algorithms[32] to 
prioritise disconnections. These methods suggest very effective 
pathways for types of reactions similar to the data set used for 
training, but do not entail any kind of learning capable of using the 
acquired knowledge to solve prediction problems in unfamiliar 
classes of reactions.

3.2 Template-free Models
Since retrosynthesis can be considered to be a sequence of 

forward reactions in the reverse order, the intuition of using the 
reaction prediction models with a swapped input-output pair was 
trivial. Liu et al.[6] used a sequence-to-sequence model for the ret-
rosynthesis and attained a top-1 accuracy of 34.1%. Additionally, 
to the reactant SMILES they included the reaction class informa-
tion in the input, instead of allowing the model to discern this 
information based solely on the reaction SMILES information. 
One critical shortcoming of this sequence-to-sequence model was 
that the model produced invalid SMILES. This implies that the 
amount of data was not sufficient for the model to understand the 
SMILES grammar. 

The Transformer model[26] in the NLP domain showed sig-
nificantly better capabilities compared to a regular sequence-to-

Despite the large corpus of approximations that can be exploited, 
QM calculations are still far from mimicking the results of wet-lab 
experiments.[12]

2.3 Machine Learning Systems
Machine Learning (ML) approaches build a model based on 

a mathematical representation that learns from the data they are 
trained on. Handling the large space of chemical compounds re-
quires a data set of considerable size which should ideally be rep-
resentative of the data on which the model is being tested. Getting 
hold of publicly available, high-quality reliable data is a challenge 
in itself. This forces many people to make use of privately curated 
data sets, e.g. Reaxys[13] or Pistachio.[14] One of the challenges 
related to the data in chemical reactions is that it only showcases 
reactions that actually take place, have good yield, and are of 
academic/industrial importance. Similar to the lack of data for 
unstable compounds as reported by Koichi and Lüthi in this is-
sue,[15] the data sets for chemical reactions do not contain negative 
examples. For instance, reactions that failed or had a low yield are 
not commonly reported. This causes important statistical imbal-
ances that need to be included in the overall picture in order to 
understand the performance of the trained AI models.

Initial works using the ML paradigm revolved around ranking 
the reaction templates according to the probability of that reac-
tion taking place with the given reactants.[16,17] Reaction templates 
are predefined schemas composed of general reactant structures 
and the transformations that can lead to a product. Coley et al.[18] 
deduced that a reaction template might match more than one reac-
tive centre in the reactants and can yield more than one product. 
Thus, they published a work that generated the products by using 
all the templates and then ranked the products with a neural net-
work, achieving a top-1 prediction of 71.8%. More recently, the 
same group presented a model to predict bond changes using the 
molecular graphs of the reactants as inputs.[5,19] In contrast, Segler 
and Waller[20] searched for novel reactions by predicting missing 
links between existing molecules in a chemical space knowledge 
graph. Inspired by earlier work on a manually generated data set 
of mechanistic steps,[21] Bradshaw et al.[22] predicted electron 
paths to generate the outcome of a reaction.

Cadeddu et al.[23] showed that there are fragments in organic 
molecules whose distribution is identical to the one of words in 
natural languages. This paved the way for regarding the reaction 
prediction task as a translation problem from reactant string to 
product string, essentially converting it to a problem of machine 
translation in Natural Language Processing (NLP). The key is 
that chemical species have to be represented in a text-based form. 
One example of such a representation is the simplified molecular-
input line-entry system (SMILES),[24] which is a line notation of 
a chemical structure, e.g.

O=C(C)OC1CCCCC1C(=O)O represents Aspirin

Nam and Kim[25] built upon this approach and applied a se-
quence-to-sequence model for predicting the reaction outcome. 
Schwaller et al.[3] demonstrated a similar approach in a much 
wider setup. They showed that an attention-based sequence-to-
sequence model, using reactants’ and reagents’ SMILES (see Fig. 
3), performs comparable to other methods that included hand-
coded chemical information.

The current state-of-the-art in reaction prediction works is the 
Molecular Transformer[4] that uses a sequence-to-sequence model 
where the encoder and decoder contain multi-head attention lay-
ers. This helps to extract the local as well as global features of the 
input string,[26] which is really helpful in the case of SMILES as 
atoms that are close in the graph need not be close in the SMILES. 
Compared to other reaction prediction models,[15,19,25,27] which 
show a comparable performance, Molecular Transformer is chem-

Fig 3. The reaction as depicted by the SMILES above. All the entities to 
the left of “>>” are the reactants which are the inputs for the models.
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sequence model in understanding the intricacies of word link-
ing and grammar. Encouraged by the success of NLP and the 
Molecular Transformer[4] for reaction prediction, many groups 
tried the same architecture on the retrosynthesis problem[32–37] and 
attained a higher top-1 accuracy than Liu et al.[6] Other than the 
work of Lin et al.,[35] the retrosynthesis was confined to a single 
step, which is not helpful in a practical sense. Recently, Schwaller 
et al.[29] published a multi-step retrosynthesis model which uses 
the Transformer architecture and a hypergraph exploration algo-
rithm to predict not just the reactant but also the reagents for each 
retrosynthetic step.

4. Conclusion
In this article, we provide an agile overview of the progress 

of AI-based data-driven methods for reaction prediction and ret-
rosynthesis, with a particular emphasis on the use of language 
models. We believe that, even though human chemical experts 
will continue to be at the forefront of chemical research, advance-
ments in AI along with better computational capabilities, will dis-
rupt the field of synthetic chemistry. Irrespective of the specific 
AI architectures, chemical reactions data will play a major role in 
boosting the performance and applicability of AI in the synthetic 
chemistry domain. Therefore, we encourage bench chemists to re-
cord more experiments with negative results and to organize their 
worldwide community around data sharing platforms and reposi-
tories, just like computational chemists use and store data gener-
ated through using supercomputers. In the near future, the access 
to a large quantity of high-quality data will be the key factor for a 
technological advantage in this specific domain. Regardless of the 
concerns about the future of artificial intelligence and robotics, 
these predictive data-driven architectures will fuel the automatic 
generation of chemical reaction schemes and robot chemists will 
assist in testing them in wet-lab experiments. AI will not replace 
chemists, but chemists will learn to use AI as a lab assistant. This 
will be the core of the next technological revolution, which will be 
affecting chemistry more than other industrial fields.
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