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Abstract: Machine-learning in quantum chemistry is currently booming, with reported applications spanning all 
molecular properties from simple atomization energies to complex mathematical objects such as the many-body 
wavefunction. Due to its central role in density functional theory, the electron density is a particularly compelling 
target for non-linear regression. Nevertheless, the scalability and the transferability of the existing machine-learn-
ing models of ρ(r) are limited by its complex rotational symmetries. Recently, in collaboration with Ceriotti and 
coworkers, we combined an efficient electron density decomposition scheme with a local regression framework 
based on symmetry-adapted Gaussian process regression able to accurately describe the covariance of the 
electron density spherical tensor components. The learning exercise is performed on local environments, allow-
ing high transferability and linear-scaling of the prediction with respect to the number of atoms. Here, we review 
the main characteristics of the model and show its predictive power in a series of applications. The scalability and 
transferability of the trained model are demonstrated through the prediction of the electron density of Ubiquitin.
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the nuclear positions and the electron density. In particular, their 
method characterizes a chemical compound through a smoothed 
representation of its external potential and decomposes the elec-
tron density into an orthogonal basis set expansion. The method 
has been successfully applied to regress the density and drive the 
dynamics of small molecules (i.e. H

2
, water, ethane, benzene and 

malonaldehyde). Nevertheless, the choice of an orthogonal expan-
sion combined with a global representation (i.e. each molecule is 
represented as a whole indivisible entity, as opposed to a collec-
tion of atoms) somehow limits the transferability (i.e. predictions 
on larger systems, upon training on small molecules) of this land-
mark model. An alternative procedure based on neural networks 
to predict the electron density has been proposed by Ramprasad 
et al.[19] The electron density and the local density of states are, 
in this case, represented on a real space grid mapped to the lo-
cal atomic environment around each grid-point. The Ramprasad 
model is thus transferable, but its reliance on millions of grid-
points limits its numerical tractability and practicality. A similar 
approach was also proposed by Alred and coworkers in the con-
text of the analysis of sulfur crosslinked carbon nanotubes.[20] A 
third strategy, proposed by some of the present authors together 
with Ceriotti and collaborators,[21,22] combines the numerical ef-
ficiency of the basis set expansion with a transferable framework 
based on a local atomic representation. In this model, the den-
sity is decomposed into an atom-centered, non-orthogonal basis 
and learned using symmetry-adapted Gaussian process regres-
sion (SA-GPR),[23] in order to capture the complex covariances 
of the electron density field. The method has been successfully 
applied to reproduce the charge density of a conformationally di-
verse ensemble of hydrocarbons and further improved to handle 
the rich chemistry of amino acid side-chain dimers taken from 
the BioFragment Database (BFDb).[24] This work gives an over-
view of the latter model and of the broad spectrum of proper-
ties derivable from ρ(r). Emphasis is placed on Hirshfeld atomic 
charges,[25] molecular dipole moments, electrostatic potential 
mappings and characterization of (non)covalent bonding patterns 
with the DORI scalar field.[26] Exploiting the linear-scaling of the 
model, we also demonstrate the transferability of the framework 
by predicting the electron density of the Ubiquitin protein as a 
prototypical macromolecule.

1. Introduction
Since the formulation of the Hohenberg-Kohn theorems,[1] the 

electron density [ρ(r)] has become an essential quantity to com-
pute the electronic properties of atoms, molecules, and materials.[2] 

Its simple dependence on real space coordinates and the fact that 
it encodes the same information as the many-body wavefunction 
make ρ(r) a very appealing object. The common procedure to 
obtain the electron density for a given compound is to perform ab 
initio computations either within the framework of Kohn-Sham 
density functional theory (KS-DFT)[3] or with wavefunction based 
methods (Hartree-Fock, post-HF, etc.). Within this procedure, 
ρ(r) is variationally optimized for a given Hamiltonian or density 
functional approximation. Computing ab initio electron density 
is inevitably associated with the problem of scalability,[4a] i.e. the 
computational cost rises dramatically when targeting thousands of 
compounds or large and chemically diverse systems. 

The scalability problem has a long history in quantum chem-
istry and has been addressed with the introduction of linear scal-
ing techniques, including the divide-and-conquer approach origi-
nally proposed by Yang,[4] Mezey’s molecular electron density 
LEGO assembler (MEDLA)[5] and the adjustable density matrix 
assembler (ADMA),[6] the fragment molecular orbital (FMO) ap-
proach of Kitaura and coworkers,[7] Karle’s kernel energy meth-
ods (KEM)[8] and the molecular fractionation with conjugate caps 
(MFCC) proposed by Zhang.[9] Along with these techniques, the 
linear scaling reconstruction of the electron density has been pro-
posed using extremely localized molecular orbitals, such as in the 
ALMO[10] and ELMO[10a,11] approaches. Given that ρ(r) is an ex-
perimental observable, X-ray diffraction is yet another technique 
to extract this information, usually in combination with multipolar 
models to reconstruct the data.[12] The latter exploits molecular 
fragment and pseudo-atomic libraries such as the experimental 
library of multipolar atom model (ELMAM),[13] its extension 
(ELMAM2),[14] the University of Buffalo database (UBDB),[15] 
the Invarioms set,[16] and the supramolecular synthon-based frag-
ment approach (SBFA).[17]

Machine-learning models have been recently developed as an 
alternative cost-efficient technique to access the electron density 
information. The first model proposed by Tuckerman, Burke, 
Müller et al.[18] exploits the Hohenberg-Kohn mapping between 

Fig. 1. Schematic representation of the regression framework for ρ(r). The electron densities of the training set are projected onto an atom-centred 
basis set, whose expansion coefficients (ci

nlm, in blue) are the target of the prediction. The training is performed by finding the regression weights (x) 
that minimize a quadratic loss function [L(x)]. After training, the regression weights and the similarity kernels between the atomic environments of the 
reference (χi) and the unknown (χj) molecules are combined to obtain the predicted coefficients.
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the sidechain–sidechain interaction subset of the BFDb,[24] exclud-
ing sulfur-containing compounds. To predict the electron density 
of a new compound, the basis set coefficients (ci

nlm
) are computed 

combining the trained regression weights (x) with the similarity 
kernels between the atomic environments of the reference (χ

i
) and 

the unknown (χ
j
) molecule (Fig. 1). The rotational symmetries 

of the spherical tensor components of the density are encoded in 
the model using a reformulation of the GPR framework based on 
the SOAP representation[30] proposed by Ceriotti and coworkers 
(λ-SOAP). The λ-SOAP representation and similarity kernels have 
the characteristic to be covariant with the symmetry operations of 
the O(3) group.[23]

3. Applications
The applications reported in Fig. 2 illustrate the versatility and 

accuracy of the electron densities predicted with the ML model. In 
principle, any quantum chemical quantity can be extracted from 
ρ(r), but in practice the most common applications are the deriva-
tion of electrostatic moments (e.g. partial charges, dipoles, etc.), 
electrostatic potential mappings and, upon integration, electro-
static energies. Appealing applications of real-time access to the 
electron density as provided here are the evaluation of electrostatic 
potential maps and electrostatic complementarity between host–
guest compounds (e.g. during the potential drug screening for a 
protein target)[31] or for the exact treatment of electrostatic interac-
tions in molecular simulations. The upper panels of Fig. 2 show the 
dipole moments and the classical Hirshfeld dominant charges[25c] 
of a prototypical water molecule example as obtained from our 
ML densities. The formalism generally used to compute these two 
properties was modified to accommodate the fact that the predicted 
electron densities are expanded into a single set of orbitals (Eqn. 
(1)). In particular, the dipole moment can be written as

2. Overview of the Model
The SA-GPR model of ρ(r) relies on an atom-centered addi-

tive decomposition of the electron density (Eqn. (1)) inspired by 
other well-established practices in quantum chemistry, such as 
the divide-and-conquer[4] and fragment molecular orbitals (FMO) 
methods.[7] Here, the electron density is expanded onto an atom-
centered non-orthogonal specialized basis set, commonly used in 
the context of the density fitting approximation (RI auxiliary ba-
sis).[27] These basis sets are specifically designed to closely mimic 
the features of one-electron densities (i.e. the binary product of 
atomic orbitals) and minimizes the density decomposition error.

ρ(�r) =

Natoms∑
i

NRI∑
k

cikφ
RI
i,k(�r) =

Natoms∑
i

∑
nlm

cinlmRn(ri)Y
m
l (θ, φ) (1)

where the sums are performed over all the RI basis functions and 
over all atoms (i) in a molecule, k is a collective index for the radial 
(n) and angular channels (l, m), R

n 
are Gaussian radial functions 

and Y
l
m are spherical harmonics. The basis set expansion coeffi-

cients (ci
nlm

) are the final prediction target of the SA-GPR model 
and depend on the similarity kernels and the regression weights 
(see Fig. 1, Prediction). In this way, instead of choosing a particular 
scheme to decompose the density into atomic contributions a priori 
(e.g. Hirshfeld partitioning,[25] Edmiston-Ruedenberg scheme,[28] 
PDFT,[29] etc.), it is the machine-learning model that determines 
the best atomic decomposition by searching for the optimal atom-
centered coefficients. During the training (Fig. 1, Training), the 
model aims at finding the regression weights (x) that minimize 
a quadratic loss function between ab initio density and its basis 
set decomposition. In the work reviewed here, the training set was 
composed by 2000 small organic dimers chosen randomly from 

Fig. 2. Applications of the ML-electron density. (top, left) Molecular dipole moment (quantitative data reported in Debye). (top, right) Application of 
the classical Hirshfeld dominant partitioning (HCD) on ρ(r). The color code highlights the density regions belonging to the oxygen (red) and to each of 
the two hydrogens (white). HCD partial charges are also reported for each atom. The ab initio (RI) label refers to the density decomposed on the RI-
basis set. (bottom, left) DORI map of the acetamide-methanol belonging to the BFDb (DORI isovalue: 0.09). The panel report additionally the number 
of electrons in this dimer, obtained from the integrated density. The isosurface is color-coded with sgn(λ2) · ρ(r), which is a scalar field capable of 
identifying the regions dominated by covalent/strongly attractive interactions (red), steric clashes (blue) and weakly attractive forces (green). (bottom, 
right) Electrostatic potential map (ESP) of the same dimer, projected onto the 0.05 e–·Bohr–3 isosurface of the density. The color code distinguishes 
the regions with negative (red), intermediate (green) and positive (blue) ESP. Water densities were computed at PBE/cc-pVQZ, while the acetamide-
methanol dimer was computed at ωB97X-D/cc-pVQZ. 
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gime (green) typical of the van der Waals regions. The excellent 
agreement is also observed between the ML-ρ(r)-based electrostatic 
potential maps and the DFT reference for the same dimer. 

4. Transferability: The Electron Density of the Ubiquitin 
Protein

The key advantage of a local machine learning framework is 
that the learning exercise and, thus, the computation of the regres-
sion weights (x in Fig. 1) can be performed on any set of molecules, 
which becomes the starting point for predicting the targeted quantity 
on a much larger system. Within this framework, the ‘extrapolation’ 
from small to complex compounds is an interpolation between the 
local environments contained in the training set and those of the tar-
get molecule. Since the complexity of the prediction only depends 
on the number of atoms in the target, the regression of the electron 
density has a strictly linear scaling computational cost. In contrast, 
the ab initio computational complexity scales as the third power of 
the number of basis functions centered on each atom. In Fig. 3, we 
demonstrate the transferability of the SA-GPR model trained only 
on the small sidechain-sidechain dimers of the BFDb by predicting 
the electron density of the Ubiquitin protein (PDB ID: 1D3Z). 

The machine-learning model allows accessing the density in-
formation of Ubiquitin at a pace incommensurably fast when com-
pared to an equivalent quality ab initio computation (ωB97X-D/
cc-pVQZ). The predicted electron density can be used in any of the 
applications mentioned in Section 4, among which we report as a 
general example the computation of the electrostatic potential maps. 

5. Conclusions and Outlook
The electron density is a compelling target for machine-learning 

applications, as demonstrated by the broad spectrum of properties 
that can be derived upon prediction. Combining an efficient de-
composition scheme and the SA-GPR framework,[23] the model is 
especially useful to target density applications in real space, such 
as the identification of covalent and non-covalent interaction fin-
gerprints with scalar fields and electrostatic potential mappings. 
Due to its locality, the framework is highly transferable and can 
be successfully applied for the regression of complex or out-of-
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where Q
i
 and 𝑅𝑅 Symb a are the charge and position of the ith nucleus and 

𝑟𝑟 = 𝑟𝑟 − 𝑅𝑅. Symb b The first term depends on coefficients for s-functions 
and can be interpreted as the contribution of partial atomic charg-
es. The second term, which contains coefficients for p-functions, 
takes into account higher-order effects. While the first term for-
mally depends on nuclear positions, it does not depend on the 
choice of origin if the system is neutral, i.e.

 
∫ 𝜌𝜌 𝑟𝑟 𝑑𝑑 𝑟𝑟 = 𝑄𝑄



 .

Dipole moments are highly sensitive to small density variations 
and their ML-predictions are thus a very challenging task even for 
small molecules. The problem is further complicated by the fact that 
the model is not constrained to yield the exact number of electrons. 
In this respect, the accuracy of the predictions obtained for the water 
molecule is fairly impressive. The topological features of ρ(r) are 
another relevant target commonly exploited for distinguishing dif-
ferent covalent bonding patterns and non-covalent interactions. The 
density overlap region indicator (DORI)[26] color-coded by the sign 
of the second density Hessian eigenvalue [sgn(λ

2
) ⋅ ρ(r)][32,33] is giv-

en here as an example to reveal the dominant electrostatic (H-bond) 
nature of the interactions between the acetamide-methanol dimer 
(reference number 0557 in our database).[34] The excellent agree-
ment between the ab initio and the ML-predicted DORI patterns, 
demonstrates that the predicted density has a correct topology (cur-
vature) and an accurate amplitudes in each point of space capturing 
both the large amplitudes (red) typical of covalent and electrostatic 
attractive interactions and the density clashes in the low density re-

Fig. 3. (top) Structure of Ubiquitin [PDB ID: 1D3Z], using a skeletal model (left) and a ribbon diagram (right). The color code in the right panel high-
lights the different types of secondary structures. (bottom, left) Predicted electron density (isovalue: 0.01 e–·Bohr–3). (bottom, right) Electrostatic po-
tential map (ESP) computed from the predicted density. The color code distinguishes the regions with the most negative (red), intermediate (green) 
and most positive (blue) ESP. As no sulfur atoms are included in the original training set, the single methionine residue of the wild form of Ubiquitin 
has been substituted with a non-natural amino acid containing oxygen instead. 



236  CHIMIA 2020, 74, No. 4� Laureates: Junior Prizes of the SCS Fall Meeting 2019

sample molecules, given a sufficiently diverse training set. The fa-
vorable linear scaling with the number of atoms allows accessing 
ab initio quality densities for extremely large systems, as shown in 
the case of the Ubiquitin protein. Overall, the model and the ap-
plications presented here represent a concrete example of a more 
comprehensive repertoire of novel methodologies, where kernel-
based machine learning and artificial neural networks are applied 
to access quantum chemical properties. In perspective, the SA-GPR 
framework could be applied to the regression of any real space sca-
lar field, as long as its decomposition in a Gaussian basis is rapidly 
convergent and it is covariant with spherical tensor transformations.
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