
Non-Noble Metals in Catalysis� CHIMIA 2020, 74, No. 6  495
doi:10.2533/chimia.2020.495 � Chimia 74 (2020) 495–498  © P. M. Pérez-García, M.-E. Moret

*Correspondence: Dr. M.-E. Moret, E-mail: m.moret@uu.nl
Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 GC, Utrecht, The Netherlands

Mechanistic Studies of the Oxidative 
Addition of Aryl Halides to Ni(0) Centers 
Bearing Phosphine Ligands

Pablo Marcelo Pérez-García and Marc-Etienne Moret*

Abstract: The oxidative addition of aryl halides is a common entry point in catalytic cycles for cross-coupling and 
related reactions. In the case of phosphine-supported nickel(0) fragments, the formation of reactive Ni(ii)–aryl 
products often competes with the production of Ni(i) species. Here, recent advances in the mechanistic under-
standing of these reactions are highlighted. In particular, the denticity of the supporting ligand has a significant 
influence on the outcome of the reaction.
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1. Introduction
The oxidative addition of aryl halides to a reduced metal cen-

ter is often the activation step through which these substrates enter 
the catalytic cycle of cross-coupling reactions.[1] A fundamental 
mechanistic understanding of this reaction is crucial for the ra-
tional development of more efficient cross-coupling catalysts. 
While the field of transition-metal catalyzed cross-couplings is 
dominated by palladium catalysis,[2] nickel is an attractive alter-
native for reasons that are not limited to sustainability. Oxidative 
addition to a Ni(0) center is generally easier even for challenging 
bonds as C–O,[3] due to its lower reduction potential and lower 
electronegativity.[4] Another innate characteristic of nickel is the 
more facile accessibility of open-shell electronic configurations 

as Ni(i) and Ni(iii), because of a higher electron pairing energy 
due to a smaller nucleus radius when compared to palladium.[4] 
The latter characteristic allows nickel to react through single-
electron transfers;[5] depending on the reaction, these pathways 
can be either productive[6] or detrimental,[7] leading in that case to 
off-cycle species and/or byproducts.[8,9] Generally speaking, the 
competition between several pathways can be modulated by the 
surrounding ligands,[6] and an understanding of the relationship 
between the ligand structure and the branching ratio between dif-
ferent pathways is desirable.

Phosphine donor ligands occupy a place of choice in nickel-
catalyzed cross-coupling methodologies because of their soft char-
acter, allowing them to stabilize reduced Ni(0) intermediates.[10] 
In a simplified catalytic cycle (Scheme 1), the reaction of an 
aryl halide with a Ni(0) center bearing phosphine ligands affords 
Ni(ii) aryl halide complexes, which then undergo transmetallation 
with a carbon nucleophile and reductive elimination to generate 
the coupling product and regenerate the active Ni(0) complex.[4] 
However, Ni(i) species are often observed both in stoichiometric 
reactions and under catalytic conditions.[7,11] While Ni(i) species 
are thought to be involved as catalytically competent intermedi-
ates with several N- and C-donor supporting ligands,[12] evidence 
suggests that they are off-cycle species in P-donor systems.[8,9] In 
this short account, we present some relevant recent mechanistic 
studies on the oxidative addition of aryl halides to a Ni(0) center 
bearing phosphine ligands. The stability in solution of Ni(ii) aryl 
halide complexes and the selectivity ratio between Ni(ii)/Ni(i) 
species are discussed, as well as the influence of the denticity of 
the supporting phosphine ligands. In particular, the ability of a 
tridentate PPP pincer ligand to favor clean oxidative addition to 
Ni(0) to form stable 5-coordinate aryl–Ni(ii) was studied experi-
mentally and computationally as a collaboration between Utrecht 
University and KU Leuven (A. Darù, Prof. J. N. Harvey), facili-
tated by the NoNoMeCat Network.

2. Monodentate Phosphine ligands
Early on, the reaction of para-substituted aryl halides with 

(PEt
3
)

4
Ni0 complex was studied in detail by Kochi and cowork-

ers.[13] They suggested that, after the dissociation of one ligand, 
an electron transfers from the nickel center to the aryl halide to 
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3).[15] Instead of the common intermediate [NiI(PR
3
)

3
+ArX–⋅] pro-

posed by Kochi, they proposed two parallel reaction pathways: 
(1) the formation of [NiII(PR

3
)

2
(Ar)X] goes through a bimolecular, 

S
N
2-like oxidative addition mechanism, and (2) the formation of 

[NiIX(PR
3
)

3
] goes through a halogen atom abstraction mechanism 

passing by an open-shell singlet transition state. The activation 
energies for the halide abstraction mechanism increase with the 
energies of the σ* orbitals for the carbon halide bonds in the aryl 
halide substrates. These results match well with the experimental 
observations reported by Kochi. The chemical nature of the halide 
seems to be not relevant for the value of the activation energy for 
the S

N
2-like oxidative addition mechanism. On the other hand, the 

number of phosphines bound to the nickel center showed to be 
relevant for the oxidative addition mechanism, a tris(phosphine) 
complex being necessary for energetically accessible transition 
states. 

3. Bidentate Phosphine Ligands
Bidentate phosphine ligands generally form more stable ad-

ducts because of the chelate effect and are often applied in Ni-
catalyzed cross coupling reactions. The reactions of aryl halides 
with a Ni(0) center bearing a bidentate phosphine ligand also yield 
Ni(ii) aryl halide complexes and Ni(i) species in a ratio that strong-
ly depends on the chosen ligand. For example, electron-rich di-
phosphines such as dippe (dippe = 1,2-bis(diisopropylphosphino)
ethane)[16] and dcpp (dcpp = 1,3-bis(dicyclohexylphosphino)
propane)[17] led to the exclusive formation of well-defined Ni(ii) 
aryl halide complexes, as does the narrow bite angle diphosphine 
BINAP (2,2'-bis(diphenylphosphino)-1,1'-binaphthyl).[8] On the 
other hand, when the wide angle diphosphine XantPhos is used, 
only Ni(i) halide species are obtained.[18]

Nelson and coworkers studied in detail the mechanism of 
the reaction of ortho- and para-substituted aryl halides with the 

form a solvent-caged radical ion pair [NiI(PEt
3
)

3
+ArX–⋅] (Scheme 

2). This intermediate can decay in two ways: either (1) the aryl 
radical is trapped by the Ni(i) center to form the Ni(ii) oxidative 
addition product [NiII(PEt

3
)

2
(Ar)X], or (2) the aryl radical diffuses 

out of the solvent cage, ultimately abstracting an H-atom from 
the solvent, and the Ni(i) complex [NiIX(PEt

3
)

3
] is formed. The 

NiI/NiII ratio decreased with increasing C–X bond strength, with 
lower polarity solvents, and with electron withdrawing substitu-
ents on the aryl moiety. Similar competition between Ni(i) and 
Ni(ii) production have been observed with different phosphine 
ligands. An additional complication arises from the fact that the 
formed Ni(ii)–aryl species can decay to Ni(i) via bimetallic reduc-
tive elimination as recently described by Baird and Budzelaar[14] 
in the case of trans-NiII(PPh

3
)

2
(Ph)Cl.

These experimental results were recently slightly reinterpret-
ed in computational studies by Maseras and coworkers (Scheme 
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Scheme 1. Simplified two-electron catalytic cycle for an aryl–aryl cross-
coupling reaction catalyzed by a Ni(0) complex. 
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Scheme 2. Kochi’s mechanism 
proposing the solvent-caged radi-
cal ion pair [NiI(PEt3)3

+ArX–⋅] as a 
common intermediate. 
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the reaction suggested an equilibrium between the coligand BPI 
and the aryl halide, followed by a concerted oxidative addition 
process passing by a polarized transition state. The nature of the 
transition state is supported by an experimental negative entropy 
of activation (–18(2) cal K–1 mol–1) and by a positive rho value 
(ρ = +2.6) determined by Hammett analysis. DFT calculations 
predict activation parameters that are consistent with experiment 
(∆G

calc 
= 23.4 kcal mol–1 compared to ∆G

exp 
= 21.9 kcal mol–1). 

Additionally, computed Hammett analyses are in good agreement 
with the observed acceleration of the reaction rate by electron-
withdrawing substituents on the aryl group. 

5. Conclusions and Outlook
In conclusion, the outcome of the reaction of aryl halides with 

a Ni(0) center strongly depends on the choice of supporting li-
gand. In this short perspective, we highlighted recent studies us-

ing phosphine ligands, focusing on the effect of the denticity of 
the ligand. These studies highlight how the selectivity between 
NiII and NiI products is affected by the supporting ligand, which 
is of importance for the development of efficient cross-coupling 
catalysts relying on two-electron mechanisms. When monoden-
tate phosphines are used, a non-selective mixture of NiII and NiI 
species is often produced by parallel mechanisms: oxidative ad-
dition and halogen atom abstraction. Additionally, the stability 
of [NiII(PR

3
)

2
(Ar)X] species in solution is compromised by the 

lability of the phosphine ligand. In the case of bidentate phos-
phines, clean NiII complexes can be obtained with electron-rich 
phosphines. For complexes bearing the widely used dppf ligand, 
the oxidative addition of aryl halides to the Ni(0) center is thought 
to proceed through a three-center, concerted transition state, but 
the stability of the resulting complexes (dppf)NiII(Ar)X depends 
on the steric hindrance of the aryl ligand to avoid the fast for-
mation of (dppf)NiIX complexes by comproportionation. Finally, 
the use of pincer triphosphine ligand PPPp-tol selectively leads to 
the production of unusual pentacoordinate (PPPp-tol)NiII(Ar)X dis-
playing a high stability in solution. Further applications of this 

well-defined (dppf)Ni0(COD) complex.[19] They proposed a fast 
exchange preequilibrium between the COD and the aryl halide, 
followed by the oxidative addition going through a three-cen-
ter concerted transition state leading to the formation of (dppf)
NiII(Ar)X complexes (Scheme 4A). This proposal was supported 
by a nil experimental activation entropy and a small positive rho 
value (ρ = 1.15) determined by Hammett analysis. Complexes 
(dppf)NiII(Ar)X are short-lived and only observable when ortho-
substituted aryl halides are used as substrates, presumably due to 
steric stabilization (ortho effect).[20] They are unstable in solution 
due to their fast reaction with unreacted (dppf)Ni0(COD), lead-
ing to the formation of (dppf)NiIX and (dppf)NiI(Ar) by compro-
portionation (Scheme 4B). The authors suggest that complexes 
(dppf)NiI(Ar) regenerate the complex (dppf)Ni0(COD), either by 
a sequence disproportionation – reductive elimination or a hydro-
gen atom abstraction from the solvent.[9,10]

4. Tridentate Phosphine Ligands
The computational results discussed above highlighted the 

higher reactivity of tris(phosphine) Ni(0) complexes for S
N
2-like 

oxidative addition. We reasoned that a tridentate phosphine could 
favor the oxidative addition over the halogen atom abstraction, 
and possibly also stabilize the Ni(ii) aryl halide complexes in 
solution, preventing its decomposition by comproportionation. 
Using this hypothesis as a starting point, we recently reported 
a combined experimental and computational mechanistic study 
of the oxidative addition of aryl halides to a Ni(0) center bear-
ing the tridentate ligand PPPp-tol (PPPp-tol = bis(2-bis(p-tolyl)
phosphinophenyl)-phenylphosphine).[21] The reaction between 
(PPPp-tol)Ni0(BPI) (BPI = benzophenone imine, a labile coli-
gand) and aryl halides cleanly produced stable pentacoordinated 
(PPPp-tol)NiII(Ar)X complexes (Scheme 5). The X-ray crystal 
structure analysis showed a trigonal bipyramidal structure with a 
facial coordination for the tridentate ligand, an axial aryl ligand 
and an equatorial halide ligand. This geometry contrasts with the 
square-planar geometry observed for the overwhelming major-
ity of phosphine-supported aryl–Ni(ii) species. A kinetic study of 
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coordination motif for the development of efficient catalysts and 
their mechanistic understanding are currently under investigation 
in our laboratory. 
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