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Abstract: Laser-induced fluorescence studies on mass-selected biomolecules are a promising route to un-
derstand their properties in the gas phase and probe their intrinsic properties in a solvent-free environment. 
Fluorescence has been used to investigate the conformation and dynamics of gaseous biomolecular ions. With 
Förster Resonance Energy Transfer (FRET), it is now possible to obtain sensitive intramolecular distance informa-
tion from large biomolecules, like proteins, with high chemical specificity. With growing interest and applications, 
gas-phase fluorescence measurements can shed greater light on the characteristics of proteins in the gas phase. 
Compared to the solution phase measurements, gas-phase fluorescence can also help understand the influence 
of solvent interactions on the protein structure and function.
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1. Gas-phase Fluorescence Spectroscopy of 
Biomolecular Ions

Laser-induced fluorescence (LIF) is an established and widely 
used tool to probe the conformation and dynamics of biomolecules 
in the solution phase.[1] Combined with the selectivity provided 
by mass spectrometry (MS), LIF techniques can also provide de-
tailed insight into the intrinsic properties of gaseous biomolecules 
in well-controlled environments.[2–6] Structural investigations of 
biomolecules in the gas phase have several advantages. By com-
paring with the solution-phase measurements, gas-phase studies 
can help us better understand the role of solvent interactions on 
protein behavior. They also facilitate the answer to hotly debated 
questions like whether the gaseous biomolecules retain their so-
lution-phase structures or not. The measurements and constraints 
obtained from gaseous biomolecules also act as a valuable bench-
mark for molecular modeling.[7]

LIF and MS have individually proved very useful for the anal-
ysis of the biomolecules.[1,8] MS and allied techniques offer many 
key capabilities to study various biomolecules like sugar, proteins, 

and oligonucleotides. These capacities have further benefitted 
from the introduction of native electrospray ionization, enabling 
the transfer of biomolecular ions to the gas phase in native-like 
conformations.[9] The accurate mass information obtained from a 
mass spectrum allows identification of a protein, its complexes, 
any post- or co-translational modifications in it, or heterogeneities 
present in the sample. Tandem MS capabilities enable high chemi-
cal specificity as ions of a specified m/z, representing a charge 
state, an oligomer, or a complex stoichiometry can be easily iso-
lated for further analysis (demonstrated in the right panel of Fig. 
1a). MS-related techniques like H-D exchange, cross-linking and 
ion mobility spectrometry are widely used to probe biomolecular 
conformers in the gas phase.[10]

Fluorescence studies of gaseous biomolecular ions can pro-
vide orthogonal information compared to those obtained from 
MS-based techniques, enabling a more detailed insight into 
the structure and dynamics of biomolecules in the gas phase. 
When coupled with MS, it is possible to perform fluorescence 
experiments on a pre-selected ion population and remove ev-
erything else, which significantly simplifies the data analysis. 
Fluorescence-based techniques like FRET can help obtain intra-
molecular distances between two selected points within a biomol-
ecule. The intramolecular distances can give insight into different 
conformations a biomolecule can have, which is highly relevant 
for molecular modeling. A similar technique known as dynamic 
fluorescence quenching can be used to study the protein dynamics 
and stability by probing local fluctuations.[3,4]

The gas-phase fluorescence measurements can provide promis-
ing results but are challenging to perform. The significant challenges 
in gas-phase fluorescence measurements are low fluorescence sig-
nal, unknown photophysics of fluorophores in the gas-phase, and 
the need to couple an optical excitation and detection system with 
an ion trap mass spectrometer.[11,12] Nonetheless, some research 
groups have risen to the challenge and performed remarkable ex-
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the protein structure, while high fluorescence collection efficien-
cy helps reduce the experimental times and perform experiments 
even in low brightness conditions. The high collection efficiency 
becomes especially critical in the case of biomolecular ions. The 
multiple charge states and adducts reduce the number of ions of 
interest in the trap, and the high charge reduces the space-charge 
limited ion density, leading to a weaker fluorescence signal. We 
recently developed an instrument in our lab that facilitates diverse 
fluorescence experiments with high fluorescence collection ef-
ficiency.[16] Fluorescence-based experiments like excitation and 
emission spectroscopy, lifetime measurements, and ion imaging 
of trapped ions can be performed with this setup. And the high 
fluorescence collection efficiency results from the large fluores-
cence collection solid angle that could be achieved with a lens 
placed very close to the ion cloud.

Key steps in obtaining fluorescence measurement are shown 
in Fig. 1a. A ~µM sample of a dye or a biomolecule labeled 
with a dye is electrosprayed to generate gaseous ions. The ions 
are transported to the ion trap through the mass spectrometer’s 
ion optics, and ions of the desired m/z are isolated, providing 
mass selection, and the rest ejected. The mass-selected ions are 
excited with a laser beam of appropriate wavelength and power. 
The fluorescence emission from the ions is collected through a 
lens placed in a hole drilled in the ring electrode of the ion trap. 
The large fluorescence collection solid angle of the lens allows 
~2.3% of emitted fluorescence to be collected. The collected 
fluorescence emission is directed to a fluorescence detection 
system where spectrally- and time-resolved fluorescence can 
be measured using a highly sensitive, electrothermally-cooled 
CCD detector and a single-photon avalanche diode detector, re-
spectively. 

periments.[11,13–16] Fluorescence from trapped gaseous ions was 
first reported way back in 1981.[17] Fluorescence from trapped flu-
orescent dyes could only be obtained in the early 2000s.[18,19] Soon 
after, fluorescence-based techniques were used to probe conform-
ers, dynamics, and structural heterogeneities in mass-selected bio-
molecules like oligonucleotides, polyprolines, and proteins.[2,5,20] 

Here, we present some key advances in the study of gaseous bio-
molecules using fluorescence-based techniques.

2. Platform for Diverse Gas-phase Fluorescence 
Measurements with High Fluorescence Collection 
Efficiency

One of the critical challenges in the gas-phase fluorescence 
measurements is the low signal intensity. The low signal stems 
from low ion density (~fM) in the ion trap and limited fluores-
cence collection solid angle because of structural constraints of 
the mass spectrometer. The absence of solvent molecules to effec-
tively dissipate heat after laser excitation leads to high photo-frag-
mentation of molecular ions and limits the range of laser power 
that can be used (µW–mW), further resulting in a weak signal. 
The use of ion traps allows a prolonged exposure of ions with 
a laser beam, and addition of multiple fluorescence acquisitions 
make it possible to perform fluorescence measurements of scarce 
ion population. Thus, ion trap mass spectrometers are the obvious 
choice for coupling optics for fluorescence measurements. Out 
of a handful of gas-phase fluorescence measurement setups that 
have been developed, some provide high fluorescence collection 
efficiency but are limited in the types of experiments that can be 
performed. Some setups can perform a variety of experiments but 
lack high fluorescence collection efficiency.[11,14,21] The diverse 
experimental functionalities are needed to gain more insights into 

Fig. 1. Gas-phase fluorescence measurements with high collection efficiency: The figure shows key steps in a fluorescence measurement performed on 
trapped ions and various results that can be obtained. (a) The ions are generated from a ~µM concentration solution using electrospray ionization. The 
ions are transported to the ion trap through ion optics of the mass spectrometer and desired m/z ions are selected. The trapped ions are irradiated with 
a laser beam (2), and the emitted fluorescence (3) is collected with the help of a lens embedded in a hole drilled in the ring electrode of the ion trap. The 
collected fluorescence emission is used for different kinds of fluorescence measurements: (b & c) excitation and emission spectra of different analytes; 
(d) fluorescence decay; and (e) false-color image of trapped ions. Figure adapted with permission from the publisher from ref. [16].
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structure and monitor conformational changes. It can be a promis-
ing addition to the existing methods used to study gas-phase bio-
molecules as the distance information obtained with FRET cannot 
be obtained directly with MS-based techniques. The intramolecular 
distance in the range of 2–10 nm determined in FRET experiments 
is highly dependent on the distance and orientation between a do-
nor and an acceptor, strategically labeled to the biomolecule. The 
distances are measured through FRET efficiency when the energy 
is non-radiatively transferred from the donor fluorophore to the ac-
ceptor. The FRET efficiency can be measured by monitoring the 
fluorescence emission of the donor and acceptor fluorophores or 
the donor’s fluorescence decay profile. 

J. H. Park’s lab pioneered the FRET on mass-selected bio-
molecules in 2003 when they presented the study on a multiply 
charged oligonucleotide complex by measuring the change in 
total donor fluorescence intensity.[2] The Zenobi group reported 
FRET in ultra-high vacuum and identified multiple FRET pairs 
in the gas phase.[24] Gas-phase FRET from fluorescently labeled 
polyproline-based peptides was reported by the Jockusch group, 
who unraveled the intricacies of the polyproline conformers in 
the gas phase.[5] Recently, gas-phase FRET measurements were 
used to study conformers of mass-selected protein in different 
charge states. A mutant variant of the B1 domain of protein G 
was FRET labeled, and fluorescence emission and lifetime of 
different charge states were measured. The FRET efficiency 
decreased with the increasing charge state of the gaseous pro-
tein indicating a more extended conformation (Fig. 2a). The 
estimated inter-dye distances from the FRET measurements 
also showed that the proteins are more expanded in the gas  
phase even in a 3+ charge state than their solution-phase struc-
ture.[4]

The characteristic feature of this instrument is diverse fluo-
rescence measurements with high collection efficiency. Figs 1b–e 
illustrate these capabilities. Fluorescence spectra of ions in a wide 
range of wavelengths and different sizes are presented along with 
a fluorescence decay and an ion image. Measurements of bright 
fluorescent dye ions such as rhodamine 6g (R6G) and rhodamine 
110 (R110) could be performed in a matter of seconds and for low 
brightness dye ions such as thioflavin T (ThT) and fluorescein, in 
a few minutes. Higher signal-to-noise (S/N) spectra, compared to 
those in literature, of very low brightness dyes thioflavin T and 
fluorescein were also acquired to illustrate the high fluorescence 
detection capabilities of the instrument.[12,22] Fluorescence spectra 
of biomolecules like carboxyrhodamine 6g-labeled ubiquitin and 
DHPE lipid – Texas red conjugate could be obtained with high 
S/N. The fluorescence excitation and emission spectra report a 
change in the microenvironment of the dye[23] and the fluores-
cence decay indicates a change in the deactivation pathways and 
presence of structural heterogeneities.[20] The ion image shows 
the position of ions within the ion trap. The high fluorescence 
collection efficiency is vital to study biomolecules. It enables the 
measurements from less abundant ions in a mixture and from ex-
periments where the fluorescence is partially quenched. It also 
gives the flexibility to use low quantum yield dyes for probing 
biomolecular structures. 

3. Distance Probes for Gaseous Biomolecules: FRET 
and Action-FRET 

Förster Resonance Energy Transfer (FRET) is the radiationless 
transfer of energy from an electronically excited fluorophore to a 
nearby acceptor. It is one of the most popular fluorescence-based 
techniques in the solution phase used to probe the biomolecular 

Fig. 2. FRET and action-FRET in the gas phase: (a). FRET obtained from mass-selected GB1 protein in different charge states. The protein was la-
beled with a FRET pair at Cys 2 and Cys 55. The fluorescence emission with increasing charge states shows the decreasing intensity of acceptor 
fluorescence (red trace), implying decreasing FRET efficiency and increasing donor-acceptor distances. Adapted with permission from the pub-
lisher.20 Copyright 2015 American Chemical Society. (b). Peptides with different donor-acceptor distances show decreasing FRET efficiency with 
increasing donor-acceptor minimum separation. Reproduced with permission from ref. [25]. Copyright 2014 American Chemical Society.
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the biomolecules. The application of these techniques to study 
large biomolecules can give insight into their intrinsic properties, 
their gas-phase conformations, and the influence of solvent on 
the behavior of a protein when compared with the solution phase 
measurements. To further enhance the gas-phase fluorescence 
measurements, different techniques, including temperature-con-
trolled ESI source, differential mobility analyzer, and cryogenic 
trapping, can be coupled to better manipulate the ion population. 
With better chemical control, more insightful information can be 
extracted from the biomolecules. 
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