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Abstract: Catalyst optimization for enantioselective transformations has traditionally relied on empirical evalua-
tion of catalyst properties. Although this approach has been successful in the past it is intrinsically limited and 
inefficient. To address this problem, our laboratory has developed a fully informatics guided workflow to leverage 
the power of artificial intelligence (AI) and machine learning (ML) to accelerate the discovery and optimization 
of any class of catalyst for any transformation. This approach is mechanistically agnostic, but also serves as 
a discovery platform to identify high performing catalysts that can be subsequently investigated with physical 
organic methods to identify the origins of selectivity. 
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1. Introduction
Efficient, catalytic, enantioselective reactions have a trans-

formative impact on chemical synthesis, and these are impor-
tant components of a synthetic chemist’s toolbox. Until recently, 
state-of-the-art enantioselective catalyst development has relied 
on empiricism and the chemical intuition of a proficient chem-
ist. This approach presents undesirable limitations, and many 
strategies have been developed to accelerate this process, includ-
ing increasing throughput with advanced screening protocols,[1] 
making high-throughput computation of transition state energies 
feasible,[2] and using mechanism-guided correlations between 
Linear Free Energy Relationships (LFERs) and enantioselectiv-
ity.[3]

Over the past decade our laboratory has focused on the devel-
opment of tools which merge the power of modern computing, 
data science, and machine learning with chemoinformatics in 
an effort to create models which make reliable predictions of 
catalyst enantioselectivity.[4] Such models address the rate lim-
iting step in state-of-the-art enantioselective method develop-
ment; finding the optimum catalyst. Because catalyst synthesis 
can be time consuming, exhaustively exploring new catalysts 
for a transformation is often infeasible. As a result, catalysts are 
often screened from commercially available libraries, relying 
on the assumption that adequate catalyst diversity is found in 
commercially available compounds. 

Another critical feature of our approach is to remedy the not 
uncommon situation in which optimization campaigns are aban-
doned because no efficient and selective ligand was available for 
rapid evaluation. Thus, we were interested in finding a way to 
identify the ‘right’ catalysts to evaluate in a reaction before mov-
ing on to a different scaffold. We also believe that enantioselec-
tive catalyst optimization is a perfect domain to apply machine 
learning because ‘bad data’ in an empirical screening campaign 
– which in the context of enantioselectivity can be hard from 
which to extract useful information – can train machine learning 
models from patterns too complex for a human to see. Thus, we 
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Early forays in the realm of phase transfer catalysis[7] drew in-
spiration from the pioneering work of Kozlowski,[8] Lipkowitz,[9] 
and Hirst[10] which used molecular field descriptors for Quantitative 
Structure Selectivity Relationships (QSSRs). An in-depth discus-
sion of this established field is summarized in a recent review 
from our laboratory.[11]

The accuracy of machine-learning models for predicting the 
outcome of chemical reactions relies on the information encoded 
within the descriptors used to represent the chemical entities. The 
limitations of current descriptors has been noted by others.[12] 
On the basis of that observation and our own experience with 
descriptor-limited modeling, we have developed descriptors for 
representing chiral catalyst structures, including: (1) continu-
ous chirality measure[13] for making QSSRs[14] and (2) the con-
former-dependent quantitative quadrant descriptor,[15] both of 
which represent entire molecular structures. We also developed 
the ElectroStatic Potential Max (ESPMax, Fig. 2)[4] as a calcu-
lable electronic descriptor for representing through-bond elec-
tronic effects of catalyst substituents. It is noteworthy that this 
fragment-based descriptor shows a significant correlation (Fig. 2, 
R2 = 0.987) with experimentally-validated Hammett parameters, 
though ESPMax is easily calculated and does not rely on experi-
mental data or interpolation from the correlation in Fig. 2. This 
descriptor has been used by Hergenrother and coworkers in a 
Quantitative Structure Activity Relationship setting to understand 
permeability of cationic nitrogen compounds.[16]

The most important descriptor developed in our laboratory 
thus far is the Average Steric Occupancy (ASO) descriptor, which 
we see as instrumental to the success of the workflow.[4] ASO 
descriptors were first used to represent CPA derivatives, and the 
process is summarized in Fig. 3. ASOs are grid-based descriptors 
constructed from a steric indicator field (SIF) – meaning that they 
encode information at pre-determined points in a grid around a 
molecule, but in this case each grid point is assigned a binary 
‘indicator’ value of 1 or 0 if it is within the van der Waals radius 
of an atom.

These SIF descriptors, when all candidate structures are 
aligned to a common orientation, encode steric occupancy 
at the same relative positions in space. We generate Average 
SIF, or ASO descriptors, by averaging the values at each grid 
point across a conformer ensemble of each catalyst. The result 
is a representation which looks like a ‘heatmap’ of steric oc-
cupancy (Fig. 3B). ASO is a high-dimensional representation 
of stereostructure. As a result, it can be difficult to ‘see’ how 
this describes chemical entities. Using dimensionality reduction 
techniques like Principal Component Analysis (PCA), we can 
visualize how CPAs in a diverse library are positioned in the 
ASO chemical space. Qualitatively, it is encouraging that in this 
representation different catalysts in the same class are generally 
grouped together (colors in 3D plot in Fig. 3C). For a more in-

set out to develop a strategy which could perform the organic 
chemist’s dream: use sub-optimal data to train a model to iden-
tify an optimized enantioselective catalyst. 

2. Our Chemoinformatic Workflow
The fully chemoinformatic workflow[5] was implemented in 

a simulated optimization of the addition of thiols to N-acyl im-
ines reported by Antilla and coworkers (Scheme 1).[6] using the 
chiral 3,3'-substituted BINOL-phosphoric acid (CPA)-catalysts. 
The workflow is depicted in Fig. 1. In the first stage, catalyst 
structures are translated into an in silico library and a representa-
tive subset is identified. The second stage involved the synthesis 
of this representative subset. In the third stage, that subset was 
used to collect data for 1,075 new reactions which were used to 
create models relating catalyst structure to selectivity. Finally, the 
optimum catalyst in the in silico library was identified by predict-
ing the selectivity for every in silico catalyst.

2.1 The Role of Descriptors
Chemoinformatics is a field which focuses on the numerical 

representation of chemical structures and properties. In the con-
text of this work, calculable numerical representations of chemi-
cal properties and structures – called descriptors – are used to 
represent chemical entities for machine learning. 

Scheme. 1. Model reaction for developing the chemoinformatic work-
flow. Reproduced with permission from ref. [4]. Copyright 2021 Ameri-
can Chemical Society.

Fig. 1. Chemoinformatic workflow developed in these laboratories. Reproduced with permission from ref. [4]. Copyright 2021 American Chemical Society
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depth discussion of our benchmarking against other features, see 
the recent review.[4]

2.2 The Role of Subset Selection
We have learned that data used to train models must be cu-

rated to represent catalyst chemical space in a manner which is 
not directed by commercial availability and chemical intuition, 
but instead led by the directive to maximize the diversity of cata-
lyst structures represented. By ensuring that maximum catalyst 
structure diversity is represented in a dataset, we have found that 
the predictions made from models trained on that dataset can be 
reliable at predicting new catalyst selectivities – a much more 
difficult task than predicting the selectivity of a catalyst that the 
model has has already seen. To accomplish this, we use algorith-
mic subset selection, which is an unsupervised process (mean-
ing only catalyst features, not reaction data are used) in which a 
maximally-diverse subset of catalysts is identified from a much 
larger pre-defined in silico catalyst library, to choose an optimal 
training set of catalysts from which to acquire data. The process 
of subset selection is pictorially represented in Fig. 4. After encod-
ing an in silico library of catalysts using molecular descriptors, 
each catalyst represents a position in chemical space. Using algo-
rithmic selection ensures that a subset covers the breadth of that 
chemical space. This optimal training set of catalysts is called a 
‘Universal Training Set’ (UTS) because it represents a particular 
catalyst scaffold in a manner which is agnostic to any specific 
transformation or reaction mechanism. 

This strategy derives from the hypothesis that algorithmic 
subset selection from a large library should provide a better set 
of catalysts to optimize a reaction with than using commercially 
available catalysts or chemical intuition. To test this hypothesis, 
we devised a study that involved comparing the performance 

Fig. 2. ESPMax descriptor developed in our laboratory. Adapted with 
permission from ref. [5b]. Copyright 2020 American Chemical Society.

Fig. 3. A: ASO descriptor calculation, B: Heatmap of ASO descriptors of a BINOL-phosphoryltriflamide, C: Plot of first three principal components of 
in silico library of BINOL-phosphoryltriflamides. Adapted with permission from ref. [5a]. Copyright 2019 American Association for the Advancement 
of Science.
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available catalysts could be chosen and any unrepresented clus-
ters can be used to synthesize far fewer new catalysts. 

2.3 Validation of the Workflow
After synthesizing the UTS of CPAs, (24 catalysts) the ex-

perimental validation campaign began by collecting enantiose-
lectivity data for 16 substrate combinations (4 N-acyl imines, 4 
thiols) for training data points. In addition 19 test catalysts were 
chosen randomly from the in silico library from which the test 
data was generated (9 different substrate combinations). After 
collecting 1,075 unique reaction enantioselectivities in duplicate 
(a total of 2,150 reactions), we began developing models relating 
catalyst and substrate features to enantioselectivity. We found 
empirically that support vector machines gave the best perfor-
mance on the basis of mean absolute error (MAE) of predicted 
and observed selectivity values.[5a]

By design, this study involved pre-determining out-of-
sample substrates and catalysts with which our models would 
remain naïve. We have demonstrated the importance of this de-
sign feature when working with combinatorial datasets.[17] As a 
consequence, we were able to independently assess the impact 
on test set predictions for subsets of the data which included 
out-of-sample substrates, catalysts, or both. The predicted vs 
observed plots of selectivities (ΔΔG‡, kcal/mol) for the training 
data (384 reactions) and all three test sets (691 reactions) are 
depicted in Fig. 6. 

These results serve to validate both the descriptors developed 
in that study as well as the workflow up to the penultimate step. 
Ultimately, our goal in developing this workflow was to identify 
optimal catalysts with lower selectivity data. We devised a sim-
ulation of such an optimization – necessary since this reaction 
was already an optimized reaction – in which data with less than 
80% enantiomeric excess (Fig. 6, right chart, purple data) was 
used to train feed-forward neural network models which were 
subsequently used to predict the selectivity of catalyst/substrate 
combinations with known higher selectivity (red data). Our goal 
was to simulate a real-life situation in which an experimentalist 
has gathered data for a range of catalysts, but cannot break the 
threshold of 80% ee using chemical intuition.[5a]

The results show a predictably lower accuracy (both by R2 
and MAE) in the training and test data than with models trained 
on data spanning the entire range of enantioselectivity, yet the 
MAE for the test set (higher selectivity data) was still 0.28 
kcal/mol, which is lower than errors expected for DFT calcu-
lated energies. In addition, the selectivity of various catalysts, 
though under-predicted, were predicted in the correct order, 
meaning that such a model could be used to select candidate 
catalysts with a higher selectivity in our simulated optimization  
scenario. 

3. Summary and Outlook
This work is the culmination of years of trial and error and 

constitutes the beginning of a major research direction for our 
laboratory using a data-driven approach to optimize enanti-
oselective catalysts. We have realized a workflow through the 
development of chemical descriptors for chiral molecules, the 
application of algorithmic subset selection methods to choosing 
catalysts for dataset acquisition, and machine learning. Readers 
can find a more detailed discussion of this chemoinformatic 
workflow in a recent review article.[4] We are currently applying 
our workflow to an array of catalyst optimization problems from 
organo-catalyzed to transition metal-catalyzed transformations.

Our future research directions include leveraging statistical 
modeling and 3D molecular descriptors to create and use models 
as an ‘idea generator’ for guiding mechanistic inquiry and to 
synthesize and use UTSs generated by this workflow for a range 
of privileged1 catalyst scaffolds.

of our training set algorithmically selected in silico library (de-
signed to include vast chemical diversity of synthetically ac-
cessible CPAs) to the performance of a training set consisting 
of commercially available CPAs.[5b] The experimental design is 
as follows: (1) commercially available catalysts within the in 
silico library were identified (12 in total) and used for a ‘com-
mercially available training set’, (2) the top 12 CPAs from the 
Kennard Stone selection process were identified for comparison, 
and (3) the data from the 25 substrate pairs were used to train 
models (12 catalysts X 25 substrate pairs = 300 data points) us-
ing each catalyst ensemble, the remaining 775 data points were 
used as test data (vide infra). The results are depicted in Fig. 
5. The Kennard-Stone selected catalysts showed good test set 
performance (Fig. 5, MAE = 0.21, RMSE = 0.26 kcal/mol, R2 = 
0.79) because it included catalysts spanning the entire catalyst 
chemical space in the training data. In contrast, using only com-
mercially available catalysts to compose a training set showed 
diminished performance in the test set (MAE = 0.28, RMSE = 
0.36 kcal/mol, R2 = 0.53). 

This result suggests that the algorithmic subset selection of 
training catalysts is a better way to select catalysts when de-
signing a dataset. Our hypothesis is that the problem with the 
commercially available catalyst training set stemmed from its 
insufficient representation of the catalyst chemical space. To test 
this hypothesis we carried out the following experiment:[5b] (1) a 
clustering algorithm was used to identify groups of catalysts in 
the in silico library of CPAs, (2) using an elbow plot for k-mean 
clustering (k = 6) the clusters were inspected for the presence of 
any commercially available catalysts, (3) a representative was 
chosen from the one cluster which contained no commercially 
available catalysts and finally, (4) an augmented training set 
(now 13) was created which included data from the commer-
cially unavailable catalyst intended to ‘teach’ the model about 
the unrepresented catalyst chemical space in the commercially 
available training set (Fig. 5). For new models trained on the 
augmented training data, the test set performance recovered sig-
nificantly (MAE = 0.21, RMSE = 0.27 kcal/mol, R2 = 0.74). This 
result gives us confidence that any dataset gathered from an al-
gorithmically selected subset of catalysts will include adequate 
catalyst diversity to develop chemically meaningful QSSR mod-
els. Another valuable interpretation of this study is the appar-
ently minimal cost in model performance using an augmented 
commercially available training set of catalysts. If a practitioner 
wished to avoid synthesizing an entire UTS, then commercially 

Fig. 4. Subset selection on an in silico library of catalysts. Adapted with 
permission from ref. [5a]. Copyright 2019 American Association for the 
Advancement of Science. 
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Fig. 6. Predicted vs. observed 
plots for training and test 
data described in Scheme 1. 
Reproduced from ref. [4] with 
permission. Copyright 2021 
American Chemical Society. 

Fig. 5. Left: external test set of a 
model trained on algorithmically-
selected catalyst training data 
vs. external test set of a model 
trained on commercially available 
catalyst data; Right: external test 
set of model trained on com-
mercially available catalyst train-
ing data augmented by one new 
catalyst. Adapted with permission 
from ref. [5b]. Copyright 2020 
American Chemical Society. 
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