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Abstract: Single particle Inductively Coupled Plasma Time-of-Flight Mass Spectrometry (sp-ICP-TOFMS), in 
combination with online microdroplet calibration, allows the determination of particle number concentrations 
(PNCs) and the masses of elements in individual particles. Because sp-ICP-TOFMS analyses of environmental 
samples produce rich datasets composed of both single-metal nanoparticles (smNPs) and many types of multi-
metal NPs (mmNPs), interpretation of these data is well suited to automated analysis schemes. Here, we present 
a data analysis approach that includes automatic particle detection and elemental mass determinations based on 
online microdroplet calibration, and unsupervised clustering analysis of mmNPs to identify unique classes of NPs 
based on their element compositions. To demonstrate the potential of our approach, we analyzed wastewater 
samples collected from the influent and effluent of five wastewater treatment plants (WWTPs) across Switzerland. 
We determined elemental masses in individual NPs, as well as PNCs, to estimate the NP removal efficiencies of 
the individual WWTPs. Through hierarchical clustering, we identified NP classes conserved across all WWTPs; 
the most abundant particle types were those rich in Ce-La, Fe-Al, Ti-Zr, and Zn-Cu. In addition, we found particle 
types that are unique to one or a few WWTPs, which could indicate point sources of anthropogenic NPs. 
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1. Introduction
In ICP-TOFMS, the complete elemental mass spectrum (from 

Li to U) is recorded continuously at time resolutions down to 1 ms. 
At this time resolution, ICP-TOFMS can be used to record NP-
derived signals, which are short transients typically between 300–
500 µs in duration.[1] Single particle-ICP-TOFMS can be used 
to quantitatively determine the amounts of several elements and 
isotopes in single NPs. Through multi-element and multi-isotope 
detection, sp-ICP-TOFMS provides a more comprehensive 
analysis of the composition of individual NPs, which is ideal for 
clustering, sorting, and identifying unique NP types from particle 
mixtures that occur in environmental samples. However, some 
elements commonly present in NPs, such as carbon, nitrogen, 
oxygen, sulphur, and fluorine, are not readily detectable at the 
single-particle level by ICP-TOFMS.[2] Throughout this article, 
we use the terms ‘single-metal’ and ‘multi-metal’ NPs (smNP and 
mmNP) to refer to particles measured with just one and with two 
or more ICP-TOFMS-detectable elements, respectively. 

Distinguishing between naturally occurring NPs (NNPs) and 
engineered NPs (ENPs) has been the topic of several studies.[3] 
Although there is ambiguity on the best method of investigation 
of these particle types, the most prominent NP characteristics 
used to categorize a NP as either engineered or natural include 
composition, crystal structure, particle morphology, and shape. [4] 
With sp-ICP-TOFMS, the simultaneous measurement of most 
metal and metalloid elements allows for the detection of variable 
and unique elemental fingerprints from different particle types. 
Due to manufacturing processes, it is assumed that ENPs will 
have fairly pure and controlled elemental fingerprints, which will 
differ from those of NNPs.[5] However, human-based evaluation 
of elemental associations through visual inspection of data and 
user-based pattern recognition is extremely time consuming and 
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2.2 Sample Introduction and MS Measurement 
Measurements were performed on an icpTOF-2R (TOFWERK 

AG, Thun, Switzerland) instrument, which has a native mass 
resolving power (m/∆m at FWHM) of ~6000 and an extraction 
frequency of 21.739 kHz. Element-mass and PNC determinations 
were performed according to our previously published online 
microdroplet calibration method.[9] As shown in Fig. 2, we 
used a dual-sample introduction setup, which was composed 
of nebulizer/spray chamber for wastewater sample introduction 
and a falling tube and microdroplet generator (50-µm diameter 
Autodrop Pipette, AD-KH-501-L6, Microdrop Technologies 
GmbH, Germany) for introduction of microdroplets calibration 
standards. Droplets were introduced into a vertical falling tube 
filled with a helium/argon gas[10] mixture and then introduced 
into the plasma concomitant with sample aerosols from the 
conventional pneumatic nebulizer/cyclonic spray chamber. A 
known amount of a plasma-uptake standard (i.e. cesium, Cs) was 
spiked into the WWTP samples and the microdroplet calibration 
solution. Through detection of the nebulized and microdroplet-
contained Cs, we determined a sample plasma uptake rate for 
every sample, which allowed us to directly calculate PNCs.

2.3 Data Processing
We developed an automated data analysis procedure to detect, 

quantify, and cluster smNPs and mmNPs for sp-ICP-TOFMS 
data. With online microdroplet calibration, we determined the 
mass of detectable elements in individual particles and the PNCs 
for each type of found NP.[7,9,11] In addition, our sp-ICP-TOFMS 
particles detection and clustering software, ‘TOF_NanoFinder’ 
is available under an open-source license (http://doi.org/10.5905/
ethz-1007-363) and is hosted at https://github.com/ethz-tema/
TEMAsingleParticle. 

We only clustered the multi-metal particles (mmNPs). For 
smNPs, we obtain mass distributions and PNCs; however, this 
information is not sufficient to develop meaningful clusters of the 
smNPs. Therefore, smNPs can be thought of as each representing 
their own particle cluster. If we had additional information about 
smNPs, such as shape or crystal structure, we could consider 
developing clustering approaches to identify the most similar 
smNP families. 

3. Automated Clustering to Discover Multi-metal 
Nanoparticle Types

The possibility to differentiate between natural and 
anthropogenic NPs based on multi-metal fingerprints has received 
considerable interest.[12] However, as an inventory of natural and 

is prone to user error and bias.[6] For example, a user might limit 
the analyte element list to simplify multi-metal patterns in the data 
and so miss unanticipated multi-metal associations. Similarly, 
low-abundance multi-metal associations are more likely to be 
overlooked in non-automated data analysis schemes.

In this article, we show a high-throughput data evaluation 
approach for non-targeted analysis of NPs measured via sp-ICP-
TOFMS. We apply these techniques to extract NP information 
from sp-ICP-TOFMS measurements of influent and effluent from 
five wastewater treatment plants (WWTPs) across Switzerland. 
Through the analysis of mmNP compositions, we report a means 
– via hierarchical clustering – to discover both conserved and 
unique mmNP types across the wastewater samples. This mmNP 
clustering approach provides insights into the origins of various 
nanoparticle types present in the wastewater samples.

 
2. Experimental Approach

2.1 Sample Selection and Preparation
We collected influent (I) samples after primary clarification 

and effluent (E) samples in 500 mL glass media bottles from five 
WWTPs (Fig. 1) and measured the samples by sp-ICP-TOFMS 
on the day of collection. Prior to sp-ICP-TOFMS analysis, we 
sonicated the samples. More details on sample preparation can be 
found in the original article.[7] 

Fig. 1 WWTP sampling sites.[8] For each site, the respective locality as 
well as the abbreviation for it in the main text are highlighted. Influent 
samples are indicated by ‘I’ and effluent by ‘E’. This figure is reproduced 
from Environ. Sci.: Nano, 2021, 8, 1211–1225 with permission from the 
Royal Society of Chemistry.

Fig. 2. Schematic diagram of 
sp-ICP-TOFMS with online 
microdroplet calibration. The 
sample is delivered to the 
ICP as a fine aerosol via the 
pneumatic nebulizer. Calibration 
microdroplets are dried in a 
falling tube before joining the 
nebulized sample through 
T-piece, and injected into the 
ICP. Inserted graph: time trace of 
elements monitored in a sample. 
Two droplet burst signals are 
visible at both ends of the time 
trace. The horizontal green line 
represents the dissolved uptake 
standard signal, and vertical 
orange lines represent analyte 
signals from microdroplets and 
are nanoparticles.
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with the instrument settings used, would also be a dominant 
NNP species.) Interestingly, some particle types seem to be less 
retained in WWTPs than others. For example, there is a larger 
fraction of Fe-containing smNPs in the effluent than other particle 
types. The apparent low removal efficiency of Fe NPs in terms 
of particle number could be due to the addition of iron in the 
wastewater treatment process to retain phosphorus;[13] some of 
the created ‘Fe-P’ colloids may pass the wastewater treatment. 
Through the characterization of mmNPs, we also find that most 
NP types are removed efficiently from the wastewater stream. 
Overall, the most abundant mmNP types include Ti-Zr, Zn-Cu, 
Al-Fe, and Ce-La. Conservation of NP type and abundance across 
all WWTPs suggests that the NPs are naturally occurring and 
ubiquitous. On the other hand, we find some NP types such as 
of Rh-Pd or Bi-V in just one or two WWTPs, which suggests 
that these NP types originate from specific (anthropogenic) 
point sources. Furthermore, we found substantial differences 
in the numbers of mmNPs detected in the influent and effluent 
samples from the different WWTPs. With these high mmNP 
fractions, significant information content on the description of 
NPs populations entering and exiting WWTPs is associated with 
the composition of mmNPs. 

5. Characterization of Multi-metal NP Clusters
In Fig. 5, we present results from two-stage HC analysis of the 

mmNP data from the influent of WWTPs. The major clusters from 
each WWTP are ‘leaves’ in the cluster tree; names of each leaf 
correspond to the wastewater samples (i.e. I1–I5) and the most 
frequent elements in the mmNP cluster. Branches of the cluster tree 
show the relation of mmNP clusters across the different WWTPs. 
Overall, we identify 23 mmNP clusters across the five WWTP 
samples. The dendrogram reveals that some mmNP clusters are 
conserved across all WWTPs and other branches result from one 
or a few WWTPs. While HC analysis reduces mmNP data into 
23 clusters and 77 leaves; the original data from each of these 
mmNPs is still accessible. Cluster tree representation offers the 
possibility to select branches or leaves of interest, and then extract 
and examine mmNP data from that subset. For example, one can 
evaluate the PNCs or element masses per particle for any given 
branch or leaf. For the remainder of this manuscript, we explore 
selected aspects of the mmNP dataset that become apparent 
through clustering analysis. 

The dendrogram in Fig. 5a shows that some clusters of 
mmNPs are more conserved than others: mmNP types that exist 
in all samples include those rich in Ti-Zr, Zn-Cu, Au-Ag, Ce-La, 
and Zr-Y. The ubiquity of these mmNP types suggests a natural 

anthropogenic particle types is currently lacking, NP identification 
based on database searching or spectral matching approaches is 
not possible. To identify different clusters of mmNPs – which 
may be assigned to specific sources – we developed a two-stage 
hierarchical clustering analyses. Clustering was accomplished 
with a custom-written MATLAB (verR2020b Mathworks, 
MA, USA) script, accessible by TOF_NanoFinder software; a 
schematic of our clustering approach is provided in Fig. 3. In 
the first step of HC, we performed intra-sample clustering of 
elemental masses present in each mmNP using the correlation 
distance and averaging method for HC. After calculating the 
average correlation distance between all the particle-events, we 
generated an agglomerative hierarchical cluster tree, in which 
each particle is connected to the cluster tree by a single linkage 
and linkages are merged together to minimize average distance 
between all mmNPs. We used an empirically determined cut-off 
distance of 0.85 to identify major clusters in each wastewater 
sample, and then created representative mmNP proxies for each 
of the major clusters found. The mmNP proxies were composed 
of elements that occurred in more than 10% of the particles part 
of given cluster and the amplitude of elements in mmNP proxies 
was the median of the ratio of element mass to the mass of the 
most-frequent occurring element in the cluster.

In order to compare the similarities between the mmNP 
clusters developed for the different WWTPs, we performed a 
second inter-sample HC analysis. In this analysis, we clustered a 
pooled sample of the representative mmNP proxies from the first 
HC. For inter-sample clustering of the mmNP proxies, we again 
used the correlation distance metric with average unweighted 
linkages, but used a lower cluster cut-off distance of 0.5 to define 
the major clusters. Subgroups of the major intra-sample clusters, 
which break up the major clusters into contributions from different 
WWTPs, are apparent below correlation distances of 0.5 on the 
resultant dendrogram (see Fig. 5). 

4. WWTPs in Terms of Nanoparticle Removal
In Fig. 4, we present PNCs for several smNPs and clusters of 

mmNPs measured in the influent and effluent of the five WWTPs. 
While we find many of the same particle clusters in the influent 
and effluent, there are dramatically fewer NPs in the effluent. This 
detailed view of removal efficiency by particle type demonstrates 
that, in our analyses, NPs composed primarily of Al, Ti, Fe, Cu, 
Zn, and Ce are the dominant particle types in both influent and 
effluent, but are efficiently removed in most cases. (It is likely that 
silicate (SiO

2
) NPs, which we could not measure at the single-

particle level due to low sensitivity at mass-to-charge (m/z) 28 

Fig. 3. Graphical illustration 
of two-stage hierarchical 
clustering (HC) of mmNPs. In 
the first step, HC is performed 
on individual samples. Then, a 
representative for each cluster 
from each sample is determined 
as described in the manuscript. 
These representative mmNP 
proxies are clustered again to 
find inter-sample clusters and 
unique mmNP types. T This 
figure is reproduced from Environ. 
Sci.: Nano 2021, 8, 1211–1225 
with permission from the Royal 
Society of Chemistry.
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Fig. 5. a). Dendrogram of hie-
rarchical clustering analysis of 
samples I1–I5. In this cluster 
tree, we identify 23 major mmNP 
types. Each unique mmNP type 
is plotted in a different color. Six 
of the unique mmNP clusters are 
highlighted in colored rectangles. 
For these mmNP clusters, the 
representative mmNP proxies 
with elements present at an oc-
currence rate limit of 1% are plot-
ted in b-g. Note that not all mm-
NPs types are found in all WWTP 
influent samples. While the Ti-Zr, 
Zn-Cu, Au-Ag, Ce-La, and Zr-Y 
mmNP clusters are found in all 
influent samples, the Bi-V-type 
mmNPs are only found in I1 and 
I3. Error bars mean in b-g are 
standard deviation of normalized 
masses. This figure is reproduced 
from Environ. Sci.: Nano 2021, 8, 
1211–1225 with permission from 
the Royal Society of Chemistry.

Fig. 4. smNPs and mmNPs detection across different WWTPs. Heat 
maps show the PNCs in the influent (a) and effluent (b), and the PNC-
based removal efficiency of each particle type in percentage (c). mmNP 
clusters are labelled according to the two most abundant elements 
measured in each particle cluster. Classification of the mmNPs is 
obtained via hierarchical clustering analysis as described in text (cf. 
Figs. 3, 5). This figure is reproduced from Environ. Sci.: Nano 2021, 8, 
1211–1225 with permission from the Royal Society of Chemistry.

origin, or at least common anthropogenic sources: if mmNPs 
were from specific point sources of anthropogenic NP pollution, 
they would likely be found only in selected WWTPs. In addition, 
we know from previous research that our mmNP types match, at 
least in part, results from studies focused on Ce, Ti, Zr, and Zn 
natural NPs.[3,5,12,14] In Fig. 5b–g, we extract data from selected 
mmNP clusters and plot the normalized mass of elements that are 
measured in at least 1% of the particles that make up each clusters. 
Normalization was done at the particle level: the quantified masses 
of each element were divided by the mass of the most frequently 
occurring element from the cluster. For example, in Fig. 3b–g, the 
normalizing elements were Ti, Zn, Ag, V, Ce, and Zr, respectively. 
The rather well conserved element ratios in these mmNP clusters 
further emphasizes that these mmNP clusters likely originate 
from comparable sources and are likely naturally occurring. 

In addition to ubiquitous NNPs, hierarchical clustering also 
identifies uncommon particle types including NPs rich in Au-
Ag, Rh-Pd, Bi-V-(Mo), Sb-W, Cr-Ni, Zn-Cu, Mn-Cu, and Ba-La. 
We find a Bi-V-rich mmNP cluster in two of the WWTP influent 
samples. As shown in Fig. 5e, the mean mass ratios of Bi:V in 
this cluster are 5:1 in I3 and 6.8:1 in I1. Because 209Bi is about 
four-times heavier than 51V, the measured element ratios are 
reasonably consistent with a one-to-one atomic ratio (4.1:1, Bi:V 
mass ratio) of bismuth vanadate (BiVO

4
), especially considering 

the low numbers of particles recorded. Bismuth vanadate – which 
is sometimes doped with Mo (as also found in the Bi-V-Mo 
cluster from I3) – is used as yellow pigment in industry[15] and as 
a catalyst,[16] and is very likely anthropogenic in origin. Another 
unexpected class is the Au-Ag cluster (Fig. 3d) that contains 5–10 
times more Au than Ag on a mass basis. We find the Au-Ag cluster 
in all WWTP samples from both of our collection days. These NPs 
may originate from gold alloys used in the jewellery manufacturing 
industry, and thus are likely anthropogenic in origin. 
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6. Conclusions
We presented a strategy for the analysis of NPs in environmental 

waters or other water samples. Wastewater samples are complex 
and likely have a mix of different types of natural and anthropogenic 
NPs. Here, we created rich sp-ICP-TOFMS datasets composed of 
a range of smNPs and mmNP types. To break down the inherent 
complexity of sp-ICP-TOFMS datasets and reduce them to an 
interpretable form, we combined online microdroplet calibration 
with an automated data analysis system. With this approach, we 
are able to extract NP data from raw ICP-TOFMS time traces, 
determine the element masses in single NPs, record PNCs, correct 
the data sets for the presence of particle-coincidence events, and 
cluster mmNPs in an unsupervised fashion. Until now, a major 
bottleneck in sp-ICP-TOFMS analysis was data processing. 
However, we are now able to rapidly deliver multi-element 
quantitative analysis of NP populations in real samples, and to 
provide initial clustering analysis to aid the interpretation of the 
data – for example, through the identification of unique mmNP 
types. 

Interpretation of our sp-ICP-TOFMS data set in terms of NP 
origin is an ongoing process and we expect continued refinement 
of our understandings. In fact, the continued refinement of 
our knowledge about mmNP fingerprints (both of natural and 
anthropogenic NP types) and the expected types of mmNPs in 
various environmental compartments is a substantial benefit of 
our current measurement approach. Because our approach allows 
for both high-throughput data collection and data analysis, we 
are now able to expand our inventory of NPs – which will, in 
turn, improve our classification models. An eventual aim of such 
studies is to establish a database approach for the identification of 
different NP types.
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