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Retrosynthesis 

The progress within Chemistry over the past century has led 
to leaps in technological innovation, and has helped us find so-
lutions to pressing challenges such as how to feed the world’s 
population, treat disease, and find materials for cleaner energy. 
As the role of the molecular sciences continues to grow, and vast 
amounts of chemical data are generated, there is an increasing 
need to explore the accumulated information to extract actionable 
insights. Initially, data aggregators and providers such as Reaxys 
and SciFinder enabled search across the breadth of chemical 
knowledge. However, increasingly there is a demand to go one 
step beyond and explore chemical space in a more ‘intelligent’ 
manner. This entails providing predictions for chemists to facili-
tate their workflows, and better understand which parts of the 
chemical space have been extensively explored, have opportuni-
ties for growth, contain solutions to pressing challenges of the 
present day, and how the growing base of information can be 
exploited. Artificial intelligence (AI) applied to synthesis predic-
tion aims to provide a solution to facilitate the search problem 
of making a compound and optimizing the process in a more 
directed manner. To illustrate this, let us consider for instance the 
discovery and development of a novel bioactive molecule.

The bioactive molecule in question could be derived from 
a human design, or from one of the many combinatorial, enu-
merative, or generative methods that have seen a resurgence of 
interest in recent years.[1] Our primary question is how to make 
the compound, and once we have made the compound, what is 
the most optimal method for its synthesis. To answer these ques-
tions, we can augment the human chemist’s abilities using an 
AI-based system to efficiently search the space of possibilities. 
This approach has two fundamental benefits. Firstly, AI models 
can generate ideas rapidly, and secondly researchers can use their 
knowledge to build on or find alternatives to ideas that they had 
not previously considered.

We can view an AI system as a compression of the current 
state of knowledge aggregated to date, combined with an optimi-
zation or search method for navigating through the space to de-
liver actionable insights. Let us first start with the data necessary 
for training models for the distinct tasks compromising synthesis 
prediction. Curated and accessible datasets are the bedrock on 

which AI-based models are built, and are a key component of en-
abling reproducibility in the wet lab. Unfortunately, there are few 
open datasets at present,[2] and efforts are currently underway to 
improve the accessibility and reporting of chemical reaction data. 
Recently Toniato and co-workers demonstrated that it is possible 
to use an unsupervised approach to clean reaction datasets, with 
the added benefit of improving model performance.[3] Similarly, 
Thakkar and co-workers highlight that model performance does 
not necessarily improve with dataset size.[4]

The two main factors influencing a model’s performance and 
application are the diversity of reactions, and the diversity of sub-
strates contained within the dataset. Such an analysis is possible 
through the use of a reaction fingerprint trained on attention-
based neural networks developed by Schwaller and co-workers 
combined with the visualization power of TMAP by Probst and 
co-workers.[5,6] The reaction fingerprint has additionally been 
extended for the prediction of reaction yields, where it was con-
cluded that the model is limited due to the mass scale distribution 
of reaction yields in the USPTO dataset.[7] Reaction yields are not 
the only subset of historical/literature/published data following a 
heavily biased distribution towards high-yielding reactions. The 
reaction types used favor those for the coupling of sp2 centers, 
such as the classical cross-coupling reactions. Protections and 
de-protections for avoiding reactivity conflicts, and amide bond 
formations also feature as frequently used reaction types. This 
bias is reflected in the frequency of reaction centers as reported 
by Schneider and co-workers.[8] In addition, the conditions used 
and the procedures required to carry out a reaction are usually 
documented as unstructured text. Vaucher and co-workers tackle 
this issue by using a custom rule-based natural language pro-
cessing approach to extract structured synthetic steps and opera‑ 
tions.[9] Such an approach could be used for data standardization 
and is currently used to enable automatization of synthetic steps 
on a robotic platform.

Rather than viewing the aforementioned data issues as prob-
lems that plague the field of AI-driven synthesis, the failure 
modes of the trained models can be viewed from the perspective 
of highlighting areas of sparse data, or identifying areas in which 
digitization efforts may be falling behind. This is derived from 
the view that the act of training a model is a compression of the 
current state of knowledge, and is a fast searching method within 
the current bounds of our digitized knowledge. 

Although AI models are biased by the data they have seen 
during the training/learning phase – a bit similar to humans 
that will favor reactions that they successfully performed in the 
past – the amount of data the models can be exposed to is im-
mense. It is impossible for a human chemist to keep up with 
the ever-growing organic chemistry literature and analyze mil-
lions of published chemical reactions to capture the underlying 
patterns, which is where AI models have the potential to shine. 
Within days, AI models can be trained on all available historical 
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data to then make informed predictions on new inputs. Trained 
models can assist chemists with general chemical knowledge, 
help with idea generation and shrink the gap between experts and 
less experienced chemists. Even experienced chemists can benefit 
from potentially unexpected suggestions outside their domain of 
expertise. Different chemical synthesis-related tasks have been ap-
proached using AI models, such as chemical reaction outcome pre-
diction (products/yields),[7] synthesis planning (paths from target to 
commercially available molecules),[10–13] experimental procedure 
prediction (actions and conditions to run the reactions),[9] and even 
atom-mapping labeling (atom reconfiguration in a reaction).[14]

Going back to the bioactive molecule that we would like to 
make – how can AI models help accelerate its synthesis? AI-driven 
synthesis planning tools can generate likely routes from the target 
over several reaction steps to building blocks within minutes.[10–13] 
Depending on the technique, the reactions can contain reagents 
and condition information or alternatively, this information can be 
completed/added in an additional step.[15] Forward reaction predic-
tion models can be used to validate, score and rank the sugges-
tions for the different steps in the route. Other synthetic feasibility 
scores for molecules based on reaction information have also been 
developed.[16,17] However, the individual reaction equations in the 
route are not enough to perform the reactions in an automated man-
ner. Therefore, Vaucher and coworkers developed an AI model that 
converts arbitrary reaction equations into experimental procedures 
with standardized steps. Those steps can then be executed by hu-
mans or robots alike.[9]

To facilitate the wider adoption of AI models by synthetic chemists, 
IBM RXN for Chemistry,[12,18] AiZynthFinder by AstraZeneca,[4,13] and 
ASKCOS by MIT, [11]  are leading efforts to make their models acces-
sible through open source code and a graphical user interface where 
the input molecules can be drawn and the models be used by chemists 
without coding experience. Besides a fully AI-driven (automatic) syn-
thesis planning mode, RXN for Chemistry has an interactive mode, 
in which chemists can use their expert knowledge to guide the AI 
model. In this way, the planning of a new synthesis can be catalyzed 
by human-AI interaction, and going one step further can be submitted 
for automation using IBMs RoboRXN.

There remain numerous opportunities to augment the discovery 
workflow and move towards an era of joint human-computer aided 
discovery.
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Fig. 1. Representation of the 
different components com-
posing an AI-based synthesis 
workflow. This can be used to 
enable chemists in identifying 
candidate molecules faster by 
leveraging insights from large 
chemical data repositories and 
translating them into actions to 
inspire humans, or to enable an 
automated workflow for the de-
livery of individual compounds 
or libraries. The decision space 
can be explored using tools 
such as the TMAP.


