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Abstract: The combination of high-throughput experimentation (HTE) and data analysis is a valuable methodol-
ogy for mechanistic interrogation and rational development of catalysts. In this article, we point out the general
structure of HTE-data analysis workflow and illustrate how it can be applied with examples of olefin metathesis
and cyanation reactions.
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1. Introduction
Catalysis is at the heart of efficient chemical processes and is di-

rectly associated with sustainable development, by lowering energy
consumption while optimizing resources. Furthermore, it will also
provide a way to transition from fossil energy and chemical resourc-
es to renewables.[1] In industrial settings, heterogeneous catalysts are
essential as they allow process intensification (decrease of energy in-
tensive steps, typically associated with separation and regeneration),
but they suffer from their intrinsic complexity. Hence, they are de-
velopedmostly via empirical approaches. In some cases, they can be
replaced by homogenous catalysts, which are powerful alternatives
due to their often higher selectivity, lower operational temperatures
and easier rational developments. For the latter, the operations (recy-
cling) are far more complex and often require years of development.
Overall, catalysis, whether homogenous or heterogeneous, requires
tedious optimization due to the large parameter space (concentra-
tion, temperature, pressure, additives…) that influences catalytic
performance (activity, selectivity, and stability). In that context, one
approach to speed up developments, that embraces the complexity
of catalysis, is high-throughput experimentation (HTE),[2]which has
emerged in the late 1990s and has gained momentummore recently,
in particular with the emergence of improved data analysis and ma-
chine learning-based approaches.[3] For instance, laboratory robot-
ics simultaneously perform multiple tasks that enable time-efficient
screening of catalysts[4] in a broad range of well-defined conditions,
thus generating large and reliable catalytic data sets. However, find-

ing the underlying rationalization behind the success of a particular
catalyst formulation remains a formidable challenge.At the opposite
end, computational chemistry, in particular, based on density func-
tional theory (DFT), has demonstrated its power to describe reaction
pathways and to rationalize reactivity and selectivity patterns but at
the expense of long and tedious work. More recently, structure–ac-
tivity studies based on multivariate linear regression analyses have
demonstrated their efficiency in identifying – in a more timely and
cost-effective way – promising correlations with predictive power.[5]
In this article, we describe how combining the efficiency of HTE
methods with data analysis via multivariate linear regression fitting
of catalytic results and computational rationalization of data allows
for computer-guided prediction of catalysis research and rational
design. Furthermore, we discuss how, in this context, the emergence
of machine learning is yet offering new possibilities, which could
revolutionize catalyst design and process implementation.

2. Methodology
The general HTE-data analysis workflow is shown in Fig. 1.

The approach described in this article is best for the development
of catalytic systems where organic ligands and additives are used
to modulate the catalytic performance and one is looking to dis-
cover and optimize the catalyst structure or formulation, e.g. well-
defined and ill-definedmolecular and supported catalysts including
nanoparticles where the organic ligands can play a major role.

Fig. 1. HTE-data analysis workflow.
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sive gas chromatography analysis of reaction aliquots. Analysis
of the raw data allowed for extraction of conversions, product
selectivities, as well as respective turnover numbers (TON) and
turnover frequencies (TOF) as catalytic output descriptors (Fig.
2A, right). After parameter processing, subsequent identification
of univariate correlations highlighted the non-anticipated impor-
tance of splitting the phenolic data set in two subgroups differing
by the presence/absence of aryl substituents in ortho positions of
the respective phenol ligands, drastically improving individual uni-
variate correlations with several computed descriptors (Fig. 2B).
Multivariate linear regression analysis was then utilized to obtain
internally validated, predictive models that portray the impact of
the interplay of stereo-electronic effects of the ligands on TOF and
TON responses for both groups (Fig. 2C). The resulting models
captured the well-established importance of the σ–donation ability
of the ligand in modulating the activity of the catalysts,[12] which
increased the confidence in the meaningfulness of the analysis.
More importantly though, the models uncovered the influence of
non-covalent interactions in tuning activity and performance, in
particular for aryl-arm bearing phenolic ligands, hence providing
a new lever that may be exploited for the future design of improved
d0 metathesis catalysts.

3.2 Cyanation
Nitriles are important structural motifs in pharmaceuticals

and natural products[13] and their cyano moiety serves as a valu-
able precursor for numerous functional group interconversions.[14]
Ample efforts have been put in developing catalytic cyanation
protocols, for instance employing nucleophilic or electrophilic
cyano sources.[15] While a major concern remains the toxicity of
the employed cyanation reagents, the choice of the optimal reac-
tion conditions, and in particular of the ligand to catalyze the reac-
tion, is often not clear. In this regard, the HTE-data analysis meth-
odology was applied to develop a novel palladium-catalyzed elec-
trophilic cyanation protocol, opting for classic Suzuki-Miyaura
cross-coupling conditions, using aryl boronic acids and N-cyano
succinimide as cyanating agent (Fig. 3).[16]Accelerated investiga-
tion of the ligand effect was automated using a liquid handling
robot to screen 90 ligands belonging to either monophosphine,
bisphosphine or the miscellaneous subgroup. All tests were
hereby performed in triplicate to assess the reproducibility of the
results, yielding 288 formulations to analyze via gas chromatog-
raphy (Fig. 3A). Similar to what was described in Section 3.1,
the workflow involved calculating DFT-derived ligand descriptors
to relate the electronic and steric properties of the ligands to the
experimentally determined yield for the mono- and bisphosphine
subsets. For the bisphosphine subset, however, ligand parameters
specific to the PdCl

2
adduct were assessed additionally to describe

the bidentate nature of the ligands. Relying on univariate and mul-
tivariate linear regression analysis, structurally-responsive ligand
behavior[17] was identified as the main characteristic required in
an optimal ligand, displaying the ability to stabilize the metal in
their bisligated state while their hemilability is able to open up a
coordination site that may be needed to enable catalysis (Fig. 3B).
XantPhos turned out to excel in this regard and was further used
as ligand to investigate the protocol for different substrates, dem-
onstrating excellent functional group tolerance in particular with
electron-withdrawingmoiety bearing aryl boronic acids (Fig. 3C).

4. Outlook: Beyond Multivariate Linear Regression
In recent years, tremendous progress in the area of machine

learning (ML) and artificial intelligence has facilitated the imple-
mentation of algorithms for non-specialists.[18] The multidimen-
sionality of chemical space complicates the use of such algo-
rithms for the synthetic community, given the requirements for
large amount of data to efficiently navigate that space. HTE has
been of outmost importance in unlocking the potential of ML in

Once the system under study is defined, high-throughput
screening should be used to perform catalyst evaluation in a
time efficient and reproducible way (step 1a). Based on analysis
of proposed mechanisms and catalyst structure, suitable ligand
descriptors should be identified and validated (step 1b). For the
construction of generalizable, unbiased models, which are aimed
at making accurate predictions for a wide range of different mol-
ecules, the gathered experimental data (TOF, TON, yield, etc.)
should be divided in a training set, used for model construction,
and an external validation set, necessary for the verification of the
models (step 2). The descriptors have to be normalized to pos-
sess the same scale and deviation, so that the coefficient in future
models reflects the variance of each parameter (step 3). First uni-
variate correlations are done to see which ligand descriptors are
most relevant for catalysis and to identify possible data subsets
of structurally related ligands. Consequently, preliminary mul-
tivariate models can be constructed, e.g. by least-squares linear
regression by forward feature selection, effectively evaluating the
change in statistics caused by addition/removal of each param-
eter and incorporation of the most important term in each step
(step 4). The generated models have to be validated by (internal)
cross-validation like Q2 or k-fold means, or by external valida-
tion with empirical results that are known before model develop-
ment (step 5). The goal of this workflow is to gain a better under-
standing of reaction mechanisms through analysis of interactions
that are described by ligand parameters, but also to predict new
active catalysts via extrapolation in concert with virtual screen-
ing. The application of this workflow will be discussed in two
case studies. In the first study, the methodology was applied to
a well-studied reaction, olefin metathesis, in order to investigate
the key descriptors that drive the catalysis for both homogeneous
and heterogeneous systems. The second example focuses on the
development of a new cyanation protocol and investigation of the
optimal ligand properties for the design of improved palladium
cross-coupling catalysts.

3. Case Studies

3.1 Olefin Metathesis
Olefinmetathesis isaprototypicalexampleofan(atom)efficient

reaction catalyzed by group 6 metals, with a broad industrial inter-
est, ranging from petrochemicals, polymers to the fine chemical
industry. Olefin metathesis, a Nobel-prize-winning technology,[6]
is used to produce propene, an essential component of polymers,
via the OCT process (WO

3
/SiO

2
), long chain olefins via the SHOP

(MoO
3
/Al

2
O

3
), biomass-derived oils or complex pheromones and

drugs (Molecular Mo or W Schrock-type catalysts).[7] Over the
last decades, a multitude of catalysts have been synthesized by
a serendipity driven approach[8] and their reactivity was rational-
ized by computational studies.[9] Further understanding of the key
parameters driving alkene metathesis and the deactivation path-
ways still remains a challenging task. Towards this goal, libraries
of homogeneous and heterogeneous Schrock-type olefin metath-
esis catalysts were efficiently synthesized using high-throughput
experimentation, specifically by using bis-pyrrolide type Mo al-
kylidene molecular complexes as ideal candidates due to their ease
of synthesis and modularity.[10] In fact, the pyrrolido ligand can
readily be exchanged via protonolysis with a XHmolecule e.g.X=
aryloxides or even silica as a support, so that over 200 formulations
were readily prepared from 35 selected phenols and with/without
silica partially dehydroxylated at 700 °C (SiO

2–700
).[11] In parallel,

density functional theory (DFT) calculations on the phenolic li-
gands were used to acquire simple steric and electronic molecular
descriptors to correlate to the anticipated reaction outputs (Fig. 2A,
left). Testing the in situ generated complexes in the homometath-
esis of 1-nonene in a robotized way enabled the monitoring of the
reaction progress at different time points by retrieval and succes-
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Fig. 2. Olefin metathesis case study. Investigation of ligand effects for homogeneous and surface organometallic chemistry derived d0 olefin metath-
esis catalyst enabled by the HTE-data analysis approach.

Fig. 3. Cyanation case study. HTE-enabled development of cyanation protocol and investigation of optimal ligand properties.
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Chemistry. The strive of data-driven strategies to the chemical
sciences has since known a clear uptick in applications[19] in both
homogeneous and heterogeneous catalysis.[20] The power of ma-
chine learning resides in its pattern recognition and self-learning
without explicit tailored programming. In this regard, the combi-
nation ofMLwith HTE opens up new avenues towards self-driven
laboratories by autonomously planning, executing and processing
reactions.[21]

5. Conclusion
In summary, the use of high-throughput experimentation in

concertwith data analysiswas demonstrated to be effective towards
mechanistic interrogation and accelerated reaction development.
While molecularly well-defined systems were explored here, this
approach is applicable to a broader range of catalyst classes, such
as supported or unsupported nanoparticles, where ligand additives
can play a major role. Such approaches are currently under inves-
tigation in our group. While HTE ensures time-efficient execution
of synthetic steps and reproducibility of the performed reactions,
data analysis, and in particular, simple multivariate linear regres-
sion models appeal through their ease of use and interpretability.
Exciting developments of ML-based methods are yet offering new
possibilities to take this methodology to the next level.
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