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The protein folding problem began with Christian Anfinsen,
and his observation that a protein’s structure is determined en-
tirely by its amino acid sequence.[1]Aside from earningAnfinsen
a Nobel Prize, this realization had obvious and hugely signifi-
cant implications: if we could understand how sequence encoded
structure, we would know the three-dimensional structure of any
protein as soon as we determined its sequence. The challenge,
though, was that Anfinsen’s simple statement masked a problem
of almost unimaginable complexity. A typical protein may have
10300 possible conformations: how could we possibly identify
which of those is the true folded conformation? Simply calcu-
lating every conformation of one protein and evaluating their
relative energies, for example, would take longer than the age
of the universe. And that is before we even ask whether we can
accurately calculate those relative energies.

The difficulty of the problem did not, of course, dissuade re-
searchers from trying to solve it, and in 1994 the community
founded the Critical Assessment of protein Structure Prediction
(CASP) experiment.[2] This biennial challenge allowed scientists
to test their protein structure prediction methods against approxi-
mately 100 experimentally determined but as yet unpublished
protein structures. For 20 years, CASP recorded a steady, incre-
mental improvement in the performance of protein structure pre-
diction methods: by 2016, the best performing method scored 41
out of 100 in a measure assessing similarity between predicted
and experimental structures.[3] In 2020, AlphaFold, a machine-
learning based method from Google-owned DeepMind, pre-
dicted 2/3 of structures with a score of more than 90, indicating
accuracy equivalent to the experimental structures, with an over-
all average score of 87.[3] For practical purposes, DeepMind had
solved the protein folding problem. Forbes magazine described
it as “the most important achievement in AI – ever”[4] and many
scientists saw huge and far reaching implications.

“This will change medicine.” One CASP judge was quoted as
saying, “It will change research… It will change everything.”[3]

AlphaFold’s success – and the rapid improvement in protein
structure prediction after a period of incremental advances – is
built on the use of deep learning methods. Where machine learn-
ing refers to any approach in which a computer attempts to learn
from data without a reliance on human-coded rules, deep learning
is a subset of machine learning that employs methods inspired by
the architecture of a human brain. Neural networks with many

layers allow models to extract features from the data in one layer,
and then combine those features into higher order features in sub-
sequent layers, steadily building a more complex description of
the information contained in the data. Though powerful, deep
learning methods are also demanding: they require large data sets
for training, and depend on high performance computing to such
an extent that they were not practical until around 2010.

The 2020 version ofAlphaFold (also known asAlphaFold2,[5]
to differentiate it from the original method used for the 2018
CASP[6]), takes as a central notion the idea that, in a protein,
neighboring residues can be treated as nodes that are connected
by edges to define a ‘spatial graph’. In this version ofAlphaFold,
a neural network system trained on publicly available protein
structures and protein sequences attempts to interpret the spatial
graph of a protein.

To perform this task, AlphaFold uses three specific inputs:
multiple sequence alignments (MSA); evolutionarily related se-
quences, and a representation of all the amino acid residue pairs
in the input primary sequence. Themain body of the network then
employs transformers, models that identify the most important
parts of the input data, to build a picture of the interrelationships
between the protein sequences and template structures. It then it-
eratively improves this picture by updating the information from
both the evolutionarily related sequences and the amino acid resi-
due pairs, before finally producing a 3D model.

The deep learning methods employed by AlphaFold are state
of the art, and the code itself is a fantastic feat of software engi-
neering, but it is important to realize that artificial intelligence
alone, no matter how sophisticated, could never have solved the
protein folding problem. AlphaFold only works because its de-
velopers had access to the PDB: a source of high-quality data
that they could use to train their algorithms. In fact, as early as
2005 the PDB contained an essentially complete library of single
domain protein structures.[7]AlphaFold’s success comes from the
ability of the deep learning algorithms to robustly connect input
sequences to the most appropriate template structures, and then
also to learn how individual residues pack together in space.

Beyond the scientific achievement of AlphaFold, a key issue
in determining the likely impact in drug discovery is the acces-
sibility of the method. And for the user, running AlphaFold is
incredibly simple. The only input required is a sequence of amino
acid residues. It is far simpler to run than traditional homology
modelling, and takes computational protein structure prediction
from being an expert activity to something that anyone can access
(though the interpretation of the resulting structures still benefits
from expert input). Beyond this, DeepMind have released the
AlphaFold code under an open source license, meaning that any-
one can modify and improve it, and the community has already
used this to produce improved versions for the prediction of mul-
timeric complexes. Initially, there was some uncertainty about
whether the model parameters could be used for commercial ap-
plications,[8] but a recent relaxing of the license conditions ap-
pears to have rendered the method truly open for all.[9]
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DeepMind have also partnered with the European Molecular
Biology Laboratory’s European Bioinformatics Institute (EMBL-
EBI) to build a freely available database of predicted structures.
The initial release included structures for the entire human pro-
teome,[10] as well as the proteomes of model organisms, totaling
350,000 proteins – more than double the number in the PDB. By
the middle of 2022, they aim to expand this database to cover
130 million protein structures: the structure of practically every
protein already sequenced.[11,12] There are some concerns about
the practicalities of this approach: are all structures updated ev-
ery time a new version of AlphaFold is released? Do we create
new databases for the new structure-prediction methods that will
follow AlphaFold? What is the environmental cost of running so
many calculations? But there are also advantages, especially to
researchers working without access to high performance comput-
ing, and researchers working in industries, such as agrochemistry
or animal health, that consider a wide range of different (and often
poorly-studied) organisms.

As this discussion indicates,AlphaFold represents a huge jump
forward in protein structure prediction, often producing structures
comparable to those obtained experimentally, and in only a year
has led to an explosion in the number of protein structures avail-
able. It is important to acknowledge though, that the method does
come with limitations, and that there are a number of important
challenges that remain to be overcome. Perhaps the most sig-
nificant for those of us wishing to use AlphaFold structures for
drug discovery, is that they are often incomplete. They lack any
non-amino acid components, including cofactors or ions that can
play significant roles in the protein’s function and inhibition. The
method as originally published also applied only to single chains,
though has now been expanded to cover multimeric proteins,[13]
and cannot model binding partners such as DNA, RNA or ligands.

A further limitation comes from the fact that AlphaFold has
been trained using the data present in the PDB, which is biased
towards well-ordered, folded proteins. AlphaFold cannot be used
to say anything meaningful about the structure of intrinsically
disordered proteins or disordered regions – amino acid sequences
that do not adopt a single well-defined secondary or tertiary struc-
ture in their native state. This is a significant limitation given that
50% of eukaryotic proteins are estimated to contain disordered
regions (but could be converted into an advantage, if AlphaFold
can be used as a tool to reliably predict regions that do not fold).
Similarly, AlphaFold is unable to predict the impact of single mu-
tations or post-translational modifications that change the protein
structure.

The final limitation of significance for drug discovery, is that
only a single protein structure is predicted per sequence (in effect,
the one most likely to be found in the PDB). In reality, proteins
are dynamic objects that occupy an ensemble of different con-
formational states, and in many cases two (or more) significantly
different structures of the same protein may play important func-
tional roles, and the correct choice of structure may be important
to understand the binding of drug molecules.

To mitigate the impact of some of the limitations described
above, AlphaFold does provide metrics on the reliability of the
predicted model: the predicted Local Distance Difference Test
(pLLDT) and the predicted aligned error (PAE). The former is
used to identify domains and possible disordered regions, and to
assess confidence within a domain, with the latter used to measure
confidence in the relative positions of residue pairs, and to assess
relative domain positions in a multidomain protein.

Taking all this information together allows us to formulate an
answer to the key question: what, overall, does AlphaFold mean
for drug discovery? Structure-based drug design is a well-estab-
lished component of drug discovery programs. In this approach,
the structure of a protein target in complex with a ligand is used
to rationalize and optimize observed binding affinity. It follows,

logically, that the more, earlier, or better structural information
that you have about a given target, the more effectively you can
apply structure-based design. One would expect, therefore, that
AlphaFold would have a significant impact on this part of a proj-
ect.A key barrier to this impact, though, is the fact thatAlphaFold
provides you with no information about how a ligand binds to a
protein. For less challenging cases, where the binding site can be
identified and understood by analogy to known structures, using
AlphaFold structures for drug design becomes more realistic, and
there is at least one report of a novel inhibitor being designed us-
ing an AI-driven workflow that combined an AlphaFold structure
with a generative chemistry engine.[8] But for a truly novel protein
it is not always possible to identify, without additional informa-
tion, where the binding site is located, let alone the binding mode
of the compound(s) of interest. In these cases, experimental struc-
ture determination will still be essential, andAlphaFold will be of
greatest utility in supporting that experimental work, by helping to
evaluate proposed protein constructs or to interpret experimental
data.

If DeepMind, or anyone else, could develop an algorithm that
could accurately predict the structure of a protein in complex with
any arbitrary ligand, that would be the point at which computa-
tional structure prediction might genuinely challenge experimen-
tal structure determination as the primary tool for use in drug dis-
covery projects. But this is a much more difficult problem. Ligand
chemical space is far more heterogenous than amino acid space;
there are far fewer ligands than amino acids in the PDB, and the
quality of ligand structures is often more uncertain than that of the
protein itself. Almost certainly, the majority of high quality ex-
perimental protein–ligand crystal structures are not even publicly
accessible: they are in proprietary databases. If this problem were
to be solved in the near future, it would almost certainly require
some arrangement that would permit those structures to be used in
the training of the AI algorithm, a task that has likely been made
more difficult by the formation of DeepMind’s own spin-out drug
discovery company.

In spite of this, there are areas of drug discovery where
AlphaFold is likely to become the method of choice for obtaining
structural information. Researchers targeting neglected diseases
– diseases that overwhelmingly affect poor communities in the
developing world – often do not have access to expensive ex-
perimental facilities, and are targeting organisms that are not well
covered by PDB structures: DeepMind has already announced a
partnership with the Drugs for Neglected Diseases Initiative.

Beyond small molecules, AlphaFold might, in the short term,
have a more significant role to play in the development of novel
therapies based on proteins, including in antibody and vaccine
development.

It is also worth considering what AlphaFold teaches us about
the impact that artificial intelligence, more generally, will have on
drug discovery.AlphaFold demonstrates, emphatically, that artifi-
cial intelligence has the potential to solve longstanding problems
in drug discovery. But it also makes clear that the realization of
that potential relies on the underlying data.AlphaFold only works
because the protein structure community has, over 50 years, com-
mitted to a well-defined standard of data collection and sharing.
Artificial intelligence is a powerful tool for extracting information
from data, but it cannot create new information, and it cannot cre-
ate order from chaos. Communities and organizations that have
not invested in maintaining high quality, standardized and easily
accessible data will not, in the short term, reap the same benefits
from artificial intelligence. They will have to invest time and ef-
fort in curating historic data sources and creating structures to
enable the sharing of data, but even this on its own may not be
enough. The data will also need to be the right data: data that is ap-
propriate for modelling. The organizations that benefit most from
artificial intelligence, therefore, will be those that close the gaps
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between experimental and computational scientists; that foster
close collaboration and mutual understanding.

AlphaFold will not, on its own, fundamentally change drug
discovery. It will not significantly decrease the cost or time to
bring a drug to market. But that does not mean that it is not hugely
significant. AlphaFold proves, beyond any doubt, that artificial
intelligence is not just hype, that it will impact on drug discovery.
AlphaFold is not the end of the story, it is the beginning. The
beginning of a revolution.
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