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Abstract: While the introduction of practical deep learning has driven progress across scientific fields, recent
research highlighted that the requirement of deep learning for ever-increasing computational resources and data
has potential negative impacts on the scientific community and society as a whole. An ever-growing need for
more computational resources may exacerbate the concentration of funding, the exclusiveness of research, and
thus the inequality between countries, sectors, and institutions. Here, I introduce recent concerns and consider-
ations of the machine learning research community that could affect chemistry and present potential solutions,
including more detailed assessments of model performance, increased adherence to open science and open
data practices, an increase in multinational and multi-institutional collaboration, and a focus on thematic and
cultural diversity.
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1. Introduction
Advances in computer hardware, specifically the introduction

of graphics cards that support programmable shaders in the ear-
ly 2000s, made deep neural networks computationally tractable
and sparked a revolution in machine learning. This also affect-
ed natural sciences, including chemistry, where the fraction of
machine learning-related articles in the literature has more than
doubled in the past six years (Fig. 1). The past decade has seen
machine learning-driven breakthroughs in multiple fields, includ-
ing biology, natural language processing, and computer vision
and image processing.[1–3] In all cases, a prerequisite for achiev-
ing these breakthroughs was the availability of large data sets on
which to train the deep neural networks – a condition also met in
chemistry, where large molecule and reaction databases exist.[4–7]
However, these breakthroughs came at high computational costs,
as complex deep learning models take up to hundreds of graphical
processing unit (GPU) years to train (Table 1). For example, the
electricity cost for a single training run, which does not include
data processing or experimentation, of the language model MT-
NLG has been estimated to be approximately USD 1 million.[8]
This high computational cost has also raised concerns regarding
the carbon footprint of such models, as training runs can consume
energy in the GWh range. However, cost-benefit analyses of large

models generally remain estimations due to missing details of the
development process and the possibility of reusing or fine-tun-
ing the models for various tasks, where they can reduce further
training or computation time, thereby offsetting training costs and
potential carbon emissions. The enormous computational costs
during training compared to previous machine-learning methods
are driven by an intrinsic property of deep-learning models: they
scale relatively well compared to other approaches. However, this
comes at a price, as the performance of deep neural networks
scales linearly at an exponential cost in both data and computa-
tion,[9,10] resulting in diminishing returns.[11] This also applies to
new neural network architectures, such as the transformer, which
has found broad application in natural language processing and
chemistry. While this new architecture expanded the abilities of
deep neural networks, the likely intrinsic limitations remain, as
large language models (LLMs), such as MT-NLG, have shown.

MT-NLG, trained on thousands of GPUs for three months by
Microsoft and Nvidia, is a transformer English language mod-
el with 530 billion parameters.[13] Compared to a previous large
language model, GPT-3, MT-NLG consumed four times as much
energy (Table 1). However, the increase in accuracies across
several language benchmarks was somewhat limited: Below
1% in LAMBADA, a word prediction benchmark, 1–3% in the
Winogrande, HellaSWAG, and PiQA reasoning benchmarks,
2.5% in the RACE-h reading comprehension benchmark, and
3% in theWiC word sense disambiguation benchmark. It did fare
better in the BoolQ reading comprehension benchmark (7–18%
increase) and specific subtasks of other benchmarks. However,
with the model being three times as big compared to GPT-3, it
is an example of diminishing returns when pushing the limits of
current deep-learning approaches.

Similar tendencies, although on a smaller scale, have start-
ed appearing in chemistry machine-learning research. Earlier
this year (2022), Nvidia released the MegaMolBART model for
de novo molecular generation and reaction prediction (Table 1).
While training using 32 GPUs for one day seems very reasonable
compared to the resources used by large language models, the
training may require months in many academic settings due to
limited resources.At the time of writing, the GPU cluster at EPFL,
a comparatively well-funded public research institution, shared
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on the direction of an entire research field. One major concern
is a narrowing of machine-learning research, as scarce resources
are increasingly allocated to a specific research direction, in this
case, deep learning, before other venues have been sufficiently
explored. Furthermore, research into the thematic diversity of
machine learning has shown that the private sector may have a
narrower focus than academia and that, within academia, elite uni-
versities that often collaborate with private organisations have a
narrower focus than other institutions.[23]

The subsequent sections will, based on the key findings in the
exploratory study ‘Social and Environmental Impact of Recent
Developments in Machine Learning on Biology and Chemistry
Research’,[8] make suggestions for how to tackle the described
challenges facing machine learning in chemistry.

2. Evaluation of Models beyond Accuracy
Given the nature of deep-learning algorithms, creating in-

creasingly large models or training networks on ever bigger data
sets will ultimately lead to ever smaller improvements over previ-
ous versions.[11] This means that accuracy as a metric is primarily
of true interest when evaluating novel neural network architec-
tures or newly introduced data sets, but after that tends to merely
become a logarithmic function of the model cost, leading to a
linear increase in accuracy at an exponential cost. In their seminal
paper Green AI, Schwartz et al. defined the estimated cost of
achieving a given result R as linearly proportional to the product
of the model size (number of parameters) E, the size of the train-
ing data D, and the number of hyperparameter experiments (e.g.
searching for the optimal number of hidden layers or neurons per
layer) H (Eqn. 1).[24]

In practice, this means that a model’s reported accuracy is
based not only on the conceptual approach but also on an expo-
nentially growing, ultimately financial, investment. The vast dif-
ferences in funding between sectors, institutions, and individual
research groups thusmake it necessary to evaluate reported results
not only on the reported accuracy of a model but also on the asso-
ciated cost.[24] Failing to do so and to assess only a model’s accu-
racy may lead to the unfortunate circumstance in which a superior

Table 1. Selected deep learning models from different domains. Recent developments in machine learning have driven the implementation of ever-
larger neural networks. This trend is mainly driven by large technology companies with access to vast computational resources. The examples in this
table show the hardware and time used to train the models, their use, as well as the estimated energy consumed by training them. It is important
to note that the energy consumption represents only the final training and not previous experimentation where commonly different variants of the
model are trained and evaluated.

Use Hardware Time Energy

GPT-3 Large language model (LLM) 310 V100s (estimated)[12] 90 days[12] 1.887 GWh[12]

MT-NLG Large language model (LLM) NVIDIA Selene supercom-
puter with 560 DGXA100 nodes
(4,480 GPUs)[13]

90 days[14] 7.862 GWh[8]

AlphaFold2 Protein structure prediction 128 Google TPUv3[15] 11 days[15] 15 MWh[16]

FastFold Protein structure prediction 512 A100 GPUs[15] 2.8 days[15] 28 MWh[17]

RoseTTAFold Protein structure prediction 8 V100 GPUs (Assumed to be 1
DGX-1 node)

28 days[18] 0.672 MWh

MegaMolBART De novo molecular generation,
reaction prediction

4 DGX-1 nodes (32 V100 GPUs) 1 day[19] 0.336 MWh[20]

Cost(R) ∝ E · D · H (1)

Fig. 1. Over the past six years, the fraction of machine learning publica-
tions in all chemistry publications has more than doubled. Adapted from
previous publication.[8]

by hundreds of researchers provides access to 136 of the same
GPU models used to train MegaMolBART. Such unequal access
to computational resources has recently been raised as a concern
within the machine-learning community.[21]An analysis of papers
presented at prestigious computer science conferences shows that
large technology companies, through their own publications and
collaborations with elite universities, may have started to crowd
out mid-tier and lower-tier universities from these conferences.[21]
This unequal access to resources may extend to labour and exper-
tise, as a recent brain-drain from academia to industry, specifically
the ‘big tech’ industry, has been documented.[22]

In a recent study,[8] I analysed whether such potential soci-
oeconomic and scientific impacts are also present in biology
and chemistry machine-learning research, as deep learning has
found broad application within both fields. By processing 16,301
chemistry works filtered for machine-learning topics, I was able
to reproduce multiple findings that raised concern within the ma-
chine-learning community, including a potential trend towards
increasing global inequality in machine-learning research for
chemistry, a potential brain-drain from academia to industry, and
significant citation inequality between publications with andwith-
out industrial affiliations. In addition, I found an increase in the
use of computational resources per publication during the past
three years that outpaced that of previous years. However, the
statistical power of this last important metric was lacking since
very few (0.4%) of the articles included both the hardware used
and the time spent to train the models.

As has been increasingly discussed within the machine-learn-
ing community, such developments may have a substantial impact
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As the recent training of the open BLOOM language mod-
el has shown, extensive public and private funding, including
the donation of computational resources by smaller technology
companies, and an international research effort are required to
train a model commonly trained by big technology companies.[28]
Similar challenges are also faced globally by less-funded insti-
tutions or groups who train models comparable in complexity
to those published by their well-funded counterparts, generally
found in Europe, China, and Northern America. Indeed, as there
is potential for machine learning to be a driver for increasing
global socioeconomic inequality, similar developments should be
discussed among the international scientific community.[29,30] In
other fields, this concentration of machine-learning research at
elite institutions in the Global North has already led to negative
societal effects. These negative effects prominently include racial-
ly biased machine-learning models used in healthcare and public
health.[31–33] Such problematic biases are commonly attributed to
data sets; however, they also include other statistical and compu-
tational biases as well as human and systemic biases.[34–36] Similar
biases could become increasingly problematic in medicinal chem-
istry and drug development, given the vast diversity of ADME
genes in Sub-Saharan Africa as an example.[37] However, pro-
moting awareness of biases and diversifying clinical and genom-
ic data may not be enough to solve the challenge of inequality
in machine learning. Keeping with the example of Sub-Saharan
Africa and medicine, there has been a deluge of interesting and
important deep-learning approaches for analysing mammography
data in the past five years.[38,39] However, in 2019, a study showed
that, for socioeconomic reasons, mammographies have little pos-
itive effect in Sub-Saharan Africa.[40] This example shows that
machine-learning models developed in high-income countries
may have no applications in low- or middle-income countries,
suggesting that merely allowing access to, e.g. pretrained models
may not solve problems for different local contexts.[41] Instead,
local researchers must be provided with the tools to develop local
solutions to local issues.[42]This echoes the still unsolved problem
of drug development for neglected tropical diseases, where local
bottom-up approaches hold great promise.[43]

Given the span of available financial resources, infrastructure,
and know-how, practising inclusive machine-learning research
should be of interest to most institutions and individual groups, as

approach is discarded because it was seemingly outperformed by
a conceptually inferior approach where sufficient resources were
available to increase the accuracy. This situation can significantly
hamper scientific progress and, in a worst-case scenario, could
drive research in a suboptimal direction. In that sense, reporting
the accuracy of a model without the associated costs can be equat-
ed to reporting an observed value of a statistic without a value
for significance, such as the p-value. Therefore, researchers and
publishers should implement measures to ensure that all metrics
necessary to evaluate a model independently from the invested
computational resources are reported. This includes, in addition
to the final model’s accuracy, the training time and the hardware
used for training, as exemplified in Table 1. Furthermore, the same
metrics (accuracy, training time, and hardware used) should be
reported for the hyperparameter experiments, which will enable
the evaluation of to what degree a model has been optimised and
whether there remains room for improvement. Finally, the time
and hardware requirements at inference (when using the model to
make predictions) should be included, as some models, such as
AlphaFold, require substantial resources at this stage.

The complete suggested metrics and additional information to
be reported are summarised in Table 2. Reporting these metrics, in
addition to existing good research practices such as open data and
open source, will not only contribute towards levelling the playing
field in applied machine-learning research for chemistry but lower
the risk of dismissing potentially better models due to a lack of
resources invested during training and optimisation for the initial
publication. Reporting these measures can also implicitly cause a
focus and eventual increase in efficiency.[24] This has the poten-
tial to lower the significant carbon footprint of large models,[25]
make models and neural network architectures more accessible,
increase the feasibility of fully optimised models, and ease the
choice of models for a given task that may include small training
sets. Finally, reporting comprehensive metrics and publishing the
code and data will increase the reproducibility of the research and
enable better peer review, as the retraining of a model for review
purposes is prohibitively costly.

A note on efficiency in machine learning: From a purely scien-
tific perspective, it is also important to remember, especially with
the recent tendency to refer to machine-learning models as arti-
ficial intelligence, that human intelligence generally requires to
train for about 16 years to be able to easily solve the tasks of large
language models among many others while consuming a total of
2.8 MWh[541] − a small fraction of the energy used to train a large
machine learning model. A comparative lack of efficiency and the
diminishing returns of deep neural networks are important to con-
sider when realistically evaluating the potential of machine-learn-
ing models, even in tasks where they potentially considerably out-
perform humans.

3. Inclusive Machine-learning Research
It has been shown that big technology companies such as

Google and Facebook, often in collaboration with elite univer-
sities, may crowd out mid-tier and low-tier universities out of
respectable machine learning conferences.[21] In addition, fol-
lowing a general trend in science, I previously identified con-
siderable quotation inequalities between ‘big tech’ and academic
institutions and a possible emerging increase in global publica-
tion inequality based on research funding in machine learning
for chemistry.[8,26,27] Potential causes for these developments
are inequities in access to computational resources and private
research increasingly attracting talent from machine-learning
fields in academia.[22,24] Furthermore, unequal funding between
academic institutions and countries is well documented.[8,26]
These conditions indicate a potential increase in the exclusivity
of machine-learning research, including applied machine-learn-
ing research in chemistry.

Table 2. When publishing a new model, the training times and hard-
ware used for both the hyperparameter experiments as well as the final
training should be reported in addition to the accuracy or a similar per-
formance metric. The hardware and associated time at inference should
also be reported. Finally, the data should also be made accessible to
enable reproducibility.

Metrics/Data/Code

Data • Data download instructions
• Training, validation, and testing data
• Data splits and splitting method
• Summary statistics of data set and splits

Code • Data preprocessing scripts
• Training and evaluation scripts

Hyperparameter
experiments

• Hyperparameter values
Accuracy
Training time
Hardware used

Training • Accuracy
• Training time
• Hardware used

Inference • Inference time
• Hardware used
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As the example in Table 3 shows, 10% of the training data can
be sufficient to draw a conclusion about the final performance of
a model. In addition, such a study can be informative when choos-
ing an existing deep neural network architecture given limited
training data.

3.3 Collaborations and Sharing of Resources
Unlike laboratory equipment and the associated experiments,

machine-learning experiments don’t require physical access to
equipment, can be distributed globally, and can be paused and
resumed at any given time. However, geographic and economic
distance remain significant negative influences on scientific col-
laboration in the machine-learning domain.[46] This shows am-
ple room for increasing equitable collaborations between com-
putational chemists, cheminformaticians and chemists across
high- and low- and middle-income countries.[47] Beyond direct
collaboration, the sharing or donating of computational resources
has proven fruitful in computational biology.[48] On a larger scale,
volunteer projects such as Folding@Home, which has broken the
exaflop barrier during the early stages of the COVID-19 pandem-
ic,[49] have shown themselves to be highly successful and may
be adapted to provide computational resources to disadvantaged
researchers in machine learning for chemistry.[50]

4. Thematic Diversity
With the advent of a promising new method, in this case, deep

neural networks, it is common that resources are shifted towards
exploring and further developing this method. This is currently no
different in the machine-learning research community. However,
as this fast adaption is driven by big technology corporations and
weaknesses such as a high environmental cost, the potential prop-
agation of biases, and a lack of robustness of the models have
largely been ignored, concerns about a potential premature nar-
rowing of machine-learning research have been raised.[23] Indeed,
recent research has found that thematic diversity inmachine learn-
ing may have stagnated and that industry research has a potential-
ly much narrower focus than academic research.[51]

However, in chemistry, the analysis in ‘Social and environmen-
tal impact of recent developments in machine learning on biology
and chemistry research’ has shown that during the recent rise of
deep learning methods, other methods have not been abandoned.
While most of the increase in scientific output can be attributed to
deep neural networks and random forest/boosting, the use of all
observed categories of machine-learning methods has been grow-
ing between 2020 and 2021 (Fig. 3).[8,52]These results suggest that
machine learning in chemistry is still methodologically diverse,
and contribution to the field is not limited by access to extensive
computational resources required by deep learning. However, as
deep learning has outpaced other methods in terms of citations,

Table 3. R2 metrics from a data ablation study adapted from ‘Reac-
tion classification and yield prediction using the differential reaction
fingerprint DRFP’.[45]

% of Training Set RF BERT XGBOOST

70% 0.92 0.95 0.95

50% 0.9 0.92 0.93

30% 0.85 0.88 0.89

20% 0.81 0.86 0.87

10% 0.77 0.79 0.81

5% 0.68 0.61 0.73

2.5% 0.59 0.45 0.62

there is always a bigger fish. While discussing potential solutions
to funding concentration in research or global inequality is far be-
yond the scope of this article, there are mitigating measures. The
following subsections introduce simple measures that have the
potential to counter the increasing exclusivity in machine learning
for chemistry.

3.1 Publishing Detailed Training and Evaluation Metrics
beyond Final Values

A deep neural network is trained iteratively by passing batch-
es of data through the network and updating the model’s parame-
ters to find a local, or optimally global, minimum of a loss func-
tion. In the example of a simple linear regression, the loss function
calculates themean squared error between the actual value and the
value predicted by the model. In a deep neural network, the gra-
dient of the loss function is calculated, and the model parameters
are updated to descend along this gradient towards a lower value.
A lower loss then leads to higher accuracy of the model. Plotting
the loss function values during model training generally results in
a curve reminiscent of a power law function, which means there
is an initial steep drop in loss (increase in accuracy) followed by
a long tail (Fig. 2).[44]

Publishing these entire training and evaluation metrics instead
of just the final values would allow researchers with limited com-
putational resources to evaluate their models against the state-
of-the-art without necessarily running the training for weeks or
months. Based on this early evaluation, the model can then be pub-
lished as-is, with potentially lower accuracy but higher efficacy, or
scarce computational resources can be invested more selectively.

3.2 Training Models on Smaller Data Sets
A common way to evaluate a deep neural network architecture

is through data ablation studies. One flavour of such a study is a
step-wise reduction in training set size to explore the influence
on the model performance. As the training set size significantly
influences the computational cost of training a model, publishing
the results of such a data ablation study allows researchers with
limited access to computational resources to train and compare
their models on a smaller training set. Training on a smaller set
would require fewer computational resources.

Fig. 2. An often observed loss curve. Making such complete metrics
available would allow for continuous comparison with a new model once
state-of-the-art performance is reached or the researcher chooses to
discard the training run before the final model has been trained, helping
to reduce computational resource usage and cost.
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and papers with industry affiliations gather significantly more ci-
tations than academic-only publications, the community should
remain vigilant to avoid a narrowing of research in the future.[8,23]

5. Conclusions
In this article, I have introduced current concerns and consid-

erations from the machine-learning community on how techno-
logical changes over the past decade have influenced the inter-
national scientific effort. In chemistry, where research on applied
machine learning has seen significant growth and increasingly
diverse applications during the past six years, these concerns and
considerations still need to be discussed. Based on a previous bib-
liometric study on machine-learning publications, I identified the
potential for increased exclusivity in machine learning for chem-
istry driven by an ever-growing need for computational resources.
As this development may have a considerable negative impact on
the future of the field, I selected three areas that have the potential
to counter these trends with relatively small efforts by the research
community and by publishers.

Evaluating machine-learning models beyond their accuracy
will potentially contribute towards levelling the playing field be-
tween researchers with access to vast computational resources and
those without. This will also avoid circumstances where a concep-
tually superior method is passed over due to a lack of resources for
training. Furthermore, this will advance research on data-efficient
models, which show good performance in settings with small
training sets, of which many examples exist in chemistry. Finally,
more efficient models will lower the machine-learning field’s car-
bon footprint, which is currently being addressed by the broader
machine-learning community. This effort is being complicated
by a lack of standardised evaluation techniques.[53] However, as
standardised evaluation techniques are being developed, the need
for an evaluation beyond accuracy will have to be addressed.

Making machine learning in chemistry more inclusive is re-
quired in a field with multiple widening gaps in terms of access
to computational resources. Academia in high-income countries
is increasingly compelled to collaborate with the private sector to
gain access to computational resources that enable them to compete
with big technology companies, while elite universities increasing-
ly collaborate with these big corporations. Meanwhile, researchers
in low- and middle-income countries are at risk of being exclud-
ed entirely. Publishing detailed metrics of model training and the
performance of models on smaller data sets could be an effective
way of enabling research on these models, and potentially superior

Fig. 3. Number of publications in machine learning for chemistry by
use of method. Neural Networks, together with Random Forest and
Boosting, have been the main contributors to the recent increase in
publications. Adapted from previous publication, based on OpenAlex
data.[8,52]

alternatives, in settings where computational resources are scarce.
Sustaining thematic diversity in machine learning for chem-

istry is essential, as it counters a potentially premature narrowing
of research that may lead the field, or parts of the field, down
the wrong path. In addition, the increasing necessity to invest in
deep learning-specialised hardware to compete with state-of-the-
art research poses the danger of lock-in or vendor lock-in due to
the current quasi-monopoly by Nvidia. While machine-learning
research in chemistry is currently thematically diverse, recent sig-
nificant citation inequalities between machine learning methods
and sectors should be monitored in the future.
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