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Abstract: RNA, widely recognized as an information-carrier molecule, is capable of catalyzing essential biological 
processes through ribozymes. Despite their ubiquity, specific functions in a biological context and phenotypes 
based on the ribozymes’ activity are often unknown. Here, we present the discovery of a subgroup of 
minimal HDV-like ribozymes, which reside  3' to viral tRNAs and appear to cleave the 3'-trailers of viral premature 
tRNA transcripts. This proposed tRNA-processing function is unprecedented for any ribozyme, thus, we 
designate this subgroup as theta ribozymes. Most theta ribozymes were identified in Caudoviricetes 
bacteriophages, the main constituent (>90%) of the mammalian gut virome. Intriguingly, our findings further 
suggest the involvement of theta ribozymes in the transition of certain bacteriophages between distinct genetic 
codes, thus possibly contri-buting to the phage lysis trigger. Our discovery expands the limited repertoire of 
biological functions attributed to HDV-like ribozymes and provides insights into the fascinating world of RNA 
catalysis.
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1. Introduction to Catalytic RNAs
RNA has gained public awareness in recent years due to its

use in mRNA vaccines and thus its significant role in combating
the Covid-19 pandemic. However, only a minimal fraction of the
human transcriptome codes for proteins (coding RNA). Interest-
ingly, the proportion of non-coding RNA (ncRNA) increases pro-
portionally to the complexity of organisms: In prokaryotes, 13%
of the genome is transcribed to ncRNA, whereas this percentage
rises to 98% in multicellular organisms.[1] Investigation of what
was long thought to be ‘junk’ has not only led to Nobel Prize-
winning gene therapy tools[2] but has also changed our view on the
catalysis of enzymatic reactions in cells and the origin of life as

we know it.[3–5]While certain classes are thoroughly investigated,
our understanding of the entirety of ncRNA functions remains
incomplete.[6,7]RNA enzymes, in short, ribozymes, are ncRNA se-
quences that fold into specific secondary and tertiary structures,
allowing them to catalyze chemical reactions. Thus, RNA is the
only naturally occurring molecule capable of both storing genetic
information and exhibiting catalytic activity. Ribozymes have been
identified in all domains of life and are essential participants in
life-sustaining mechanisms such as peptide bond formation of pro-
teins,[8] transfer-RNA (tRNA)maturation,[9] andmRNA splicing.[10]

1.1 Small Self-cleaving Ribozymes
The classes of small self-cleaving ribozymes are characterized

by their concise sequences (typically shorter than 200 nucleotides
(nt)) and are restricted to self-scission and/or -ligation. These
ubiquitous ribozymes are astoundingly diverse in their sequences,
three-dimensional structures, and biological functions.[11–15] De-
spite this diversity, they all catalyze the same chemical reaction:
Internal transesterification of their own phosphate backbone. The
3'-phosphate is attacked by the adjacent 2'-oxygen of the ribose,
resulting in a 5'- hydroxy and a 2',3'-cyclic phosphate group
(Scheme 1).[16]This reaction also occurs uncatalyzed in RNAmol-
ecules, giving them their intrinsic instability. However, the tertiary
architecture of the ribozyme fold together with further activators
accelerates the reaction by several orders of magnitude and re-
stricts it to a single site in the primary sequence (site-specific).

1.2 HDV-like Ribozymes
Among the, roughly, dozen classes of small self-cleaving ri-

bozymes, this article focuses on a ribozyme class that was first
discovered in the Hepatitis DeltaVirus (HDV, Fig. 1a).[17]Since its
discovery in the 1980s, ribozymes with similar secondary struc-
ture and cleavage mechanism have been discovered abundantly
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complex secondary interactions are currently impossible to pre-
dict reliably using available software. Furthermore, even if novel
potentially active RNA motifs are discovered, a catalytic activity
must be assigned, which can be extremely challenging. For this
reason, self-cleaving ribozymes are among the most studied ribo-
zymes since methods to characterize their site-specific activity are
well-established. However, if a specific structural motif of a ribo-
zyme class is known, it is possible to perform searches using this
pre-defined motif and software such as RNArobo.[25] The search
results comprise all sequences that are theoretically capable of
adapting this pre-defined secondary structure. This approach can
be used to discover genetic locations of already known ribozyme
motifs within newly available sequence databases, thus serving as
a supporting method for identifying potential biological functions
of these ribozymes.

2. Results

2.1 The Discovery of Theta Ribozymes
We were intrigued by minimal versions of HDV-like ribo-

zymes, which lack one of the five double helical domains (P4), but
exhibit an unchanged catalytic signature (Fig. 1c). These minimal
variants were discovered 10 years ago by a motif search,[24] yet
their biological functions remained elusive. We used an adapted
search motif here on more recently available sequencing data.
This led to the observation that minimal HDV-like ribozymes
often occur with their cleavage site directly adjacent to tRNA
genes in bacteriophages associated with the human gut. Due to
this association, we termed these specific HDV-like ribozymes
theta ribozymes (Qrz). Premature tRNAs require the scission of
their respective 5'- and 3'-trailers for their maturation. While the
5'-trailer is processed solely by RNase P,[26] 3'-trailer processing
requires complex enzyme machineries.[27]We interpreted the as-
sociation of a Qrz with a tRNA as a clear indication that Qrzs can
take over the task of site-specific 3'-trailer scission, thus reducing
the genetic space required to encode for the machinery to perform
this function. This was the first time such a biological function
was proposed for any ribozyme.

2.2 The Metagenomic Hunt for rzs
We wanted to know whether our findings were rare or wide-

spread, so we expanded our search to larger databases, including
metagenomic sequencing data. First, we optimized the search mo-
tif to reduce the number of false-positive hits, which we defined
as putatively inactive motifs (Fig. 2a and b). In four optimization

in all domains of life, including humans (CPEB3 ribozyme, Fig.
1b).[18]Despite the abundance of these so-called HDV-like ribo-
zymes, only a handful of biological functions have been attributed
to them to date.[17,19–23]

1.3 Structure-function Prediction
When trying to assign a biological function to a ribozyme, the

first place to look is its genetic context, as genetic loci in proxim-
ity are usually biologically connected. Currently known HDV-
like examples were discovered mostly in non-informative genetic
loci, such as within non-long terminal repeats[20,21] and coding
regions or in metagenomic sequencing raw reads.[24] The latter
complicates things further, since raw reads usually span only ~150
to 200 nt, aggravating the prediction of coding regions and thus
genomic contexts. Apart from that, the identification of novel ri-
bozymes in the first place is difficult since their primary sequences
are poorly conserved. Instead, their complex tertiary structural
motifs enable their catalytic activities. For example, the HDV-like
motif comprises two intertwined pseudoknots, i.e. structures that
result from the loop of a hairpin base pairing with a complemen-
tary, single-stranded region outside of that hairpin (Fig. 1). Such
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thus also validating our approach of estimating false positives in
the motif search (Fig. 2b). This is consistent with recent studies
showing similar inactivation with no rescue mutation.[39,40]

2.4 Suppressor tRNA-associated rzs Reveal
Stop-codon Recoding

To better understand the possible biological relevance ofQrzs,
we investigated the identity of their associated tRNAs. Surpris-
ingly, one fifth of our hits is associated with a suppressor tRNA
(tRNASup), making this the second-most commonly associated
tRNA type after tRNAMet. Furthermore, 99.7% of the associated
tRNASup contain an anticodon to the amber stop-codon (UAG),
strongly suggesting that this stop-codon may be reassigned to in-
corporate an amino acid instead of terminating translation, i.e. the
bacteriophage is recoded. Based on recent findings by Borges et
al.[31] that ~2-6% of human and animal gut phages are recoded,
we used a similar approach to predict the genetic codes of the an-
notated bacteriophage genomes used in our motif searches. This
method relies on the fact that recoded genomes have fragmented
genes when predicted using the standard genetic code instead of
high coding density when using an alternative code. Remarkably,
we found a very high positive correlation between the predicted
recoding of genomes and the occurrence of tRNA-associatedQrzs
(59.0%). Notably, if a genome contains a tRNASup-associatedQrz,
we observe recoding in 96.4% of those phages. In all of these
cases, the amber stop-codon is recoded to glutamine, which cor-
relates with tRNASup isotype predictions (69.4% show a bacterial
Gln isotype).

steps utilizing annotated viral databases,[28–37] we achieved a final
search motif yielding a very low false positive rate and a high
association with tRNAs (Fig. 2c and d). Using this final motif,
we searched both annotated databases[28–37] as well as publicly
available metagenomic raw reads within the MicrobeAtlas proj-
ect mostly based on MAPseq[38] (microbeatlas.org) and discov-
ered 1’753 uniqueQrz sequences adjacent to 5’810 unique tRNAs
heavily overrepresented in sequences associated with the mam-
malian gut. This large number was astounding considering that we
searched raw reads (~150-200 nt) approximately the same length
as a Qrz linked to a tRNA (~130-150 nt). Furthermore, previous,
similar searches yielded orders of magnitude fewer ribozymes.[24]

2.3 Qrzs are Active in vitro
Having discovered a large number of ribozymes with a pro-

posed novel function, we wanted to know if they perform HDV-
like self-scission in vitro. For this reason, we measured the appar-
ent self-cleavage rate constant (k

obs
) of four different Qrz/tRNA

pairs at different Mg2+ concentrations and pH values. As expected
for HDV-like ribozymes, the self-cleavage rates increase with ris-
ing Mg2+ concentration (Fig. 2e) and have their optima at neu-
tral pH (Fig. 2f). This is because the internal transesterification
mechanism of HDV-like ribozymes relies on an essential cytosine
residue in the J4/2 junction (C75 in the HDV ribozyme; Fig. 2a).
This residue shows a perturbed pK

a
and together with a nearby

essential Mg2+ ion enables acid-base catalysis at ambient pH, acti-
vating the nucleophile as well as stabilizing the transition state and
leaving group (Scheme 1). We confirmed the identity and neces-
sity of the catalytic cytosine residue bymutating it to uracil, which
completely abolished the self-scission activity (data not shown),
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