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Abstract: The combinatorial composition of proteins has triggered the application of machine learning in en-
zyme engineering. By predicting how protein sequence encodes function, researchers aim to leverage machine
learning models to select a reduced number of optimized sequences for laboratory measurement with the aim
to lower costs and shorten timelines of enzyme engineering campaigns. In this review, we highlight successful
algorithm-aided protein engineering examples, including work carried out within NCCR Catalysis. In this context,
we will discuss the underlying computational methods developed to improve enzyme properties such as enantio-
selectivity, regioselectivity, activity, and stability. Considering the rapid maturing of computational techniques,
we expect that their continued application in enzyme engineering campaigns will be key to deliver additional
powerful biocatalysts for sustainable chemical synthesis.
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1. Introduction
In optimal settings, enzymes can facilitate complex reactions

with extraordinary specificity and selectivity.[1,2]However, practical
reality usually differs from this ideal as wildtype enzymes are often
just marginally stable in the selected reaction conditions[3] and per-
form at scales well belowwhat is required to drive an industrial pro-
cess. However, as enzymes are combinatorically composed from
a limited set of simple building blocks, improved catalysts can be
constructed in the laboratory by applying enzyme engineering strat-
egies, among them the directed evolution of proteins. Consequently,
engineered enzymes are harnessed inmany industrial fields ranging
from the fine chemical to the pharmaceutical sectors.[4–6]

Over the last decades, the technique of directed evolution has
developed into a powerful tool (Nobel prize for chemistry 2018)[7]
and today, it is routinely applied to tailor critical protein proper-
ties.[4,8] Directed evolution mimics nature’s selection process in
the laboratory through iterative cycles of gene diversification and
selection of the encoded protein variants generating enzyme lin-
eages with new or improved functions.[9] However, unlike nature,
which selects for survival or reproduction, directed evolution can
be used to precisely tailor desired protein traits.[10] In this context,
astounding improvements in target biological functions for sev-
eral different enzyme families have been achieved, including ac-
tivity,[11–13] stereoselectivity,[14,15] thermostability,[16] and solvent
tolerance.[17] Strikingly, these studies screened only a relatively
small fraction of the target protein’s underlying sequence space,
raising the question of whether better sequence solutions would,
in principle, exist for the function of interest. Unfortunately, such
a question cannot easily be answered experimentally: Full ran-
domization of a small protein consisting, for example, of 100
amino acids leads to a search space of sequences that is larger
than the estimated number of atoms in the universe.[18] Even the
targeted randomization of predefined positions within a protein
quickly leads to a screening bottleneck: While replacing a single
amino acid position with all other natural amino acids yields an
experimentally manageable library size of 201 variants, combi-
natorically investigating as little as five sites in a protein already
leads to a library size of 205. Clearly, it is difficult to experimen-
tally screen such large libraries exhaustively, even when using
advanced automation. In addition, most mutations introduced into
a protein are either neutral or unfavorable,[19] leading to an even
more inefficient sampling of the sequence space. To address the
numbers problem in protein engineering, researchers are increas-
ingly interested in implementing computational techniques, such
as molecular dynamics simulations,[20] phylogeny, docking,[21,22]
and, more recently, machine learning (ML) (Fig. 1).[23]

ML, in particular, has emerged as a powerful and versatile
tool for various applications, many of which affect our daily lives,
such as translating languages[24] or recommending what movies
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ing algorithm (ASRA),[29,30] which focuses on finding beneficial
regions in a combinatorial enzyme library with minimal screening
effort. The underlying principle of the approach is to first evaluate
a small subset of all possible variants of a combinatorial enzyme
library experimentally before reordering the amino-acid pairs to
maximize the smoothness of the measured property landscape
(Fig. 2).[28] Unlike the traditional quantitative structure–activity
relationships (QSAR),ASRA does not make explicit assumptions
about linearity, additivity, or specific relationships between struc-
ture and function. It only relies on the hypothesis that the underly-
ing protein landscape is, to some extent, smooth.[31,32] This is an
assumption ASRA shares with most, if not all, computational ap-
proaches and, from our experience, represents a valid bias in pro-
tein engineering in most cases.Within theANEH study,[28]ASRA
was shown to be a powerful tool for obtaining reliable estimates
about areas of interest within the sizable sequence space that aris-
es from evaluating variants combinatorically. Notably, ASRA did
not rely on complex protein/residue descriptors making the algo-
rithm a compelling starting point for protein engineering cam-
paigns.

Following this first example, a second study on ML-aided
directed evolution for stereoselectivity was published in 2018.
Interestingly, it builds upon the same experimental platform as
the previous example, namely the enantioselectivity of epox-
ide hydrolase from ANEH.[33] Starting from only nine experi-
mentally evaluated single-point mutants, the researchers built a
model and predicted the enantioselectivity of all combinations
of these initial changes (29). The algorithm, which was used to
predict the new sequences, dubbed innov’SAR, was developed
by PEACCEL, a France-based biotechnology start-up focusing
on enzyme engineering and drug discovery.[34] Innov’SAR only
requires sequence information and experimental protein fitness
values for training and subsequent inference. Overall, the applied
process can be summarized in four steps: 1) The entire protein
sequence is encoded based on each amino acid’s physicochemi-
cal and biochemical properties; 2) from this numerical protein
representation, a protein spectrum is calculated through digital
signal processing techniques; 3) the protein signals and their re-
spective fitness values are used to construct a regression model;
4) this regression model finally predicts the properties of all pos-
sible variant permutations. Applying these steps to the epoxide
hydrolase from ANEH led to predicted sequences which, when
evaluated experimentally, revealed enzyme variants with im-
proved enantioselectivity.

Fig. 2. Application of the ASRA algorithm: First, a random subset of a
two-site combinatorial library is screened (left). Next, the amino acid
pairs are rearranged to maximize the smoothness of the fitness land-
scape (right). This rearrangement highlights beneficial regions (yellow
box in right plot) to explore in a library of reduced size. In this represen-
tation, black squares denote amino acid combinations which were not
experimentally measured, whereas a colored filling indicates variants
that have been measured for activity.

to watch next.[25] Looking forward, ML is expected to profoundly
impact the field of protein engineering as well. In contrast to tra-
ditional directed evolution, which discards information except if
related to the most beneficial mutations, ML techniques can rely
on all generated data to speed up the evolution process. This accel-
eration might be achieved by learning a function representing the
underlying protein landscape from a set of sequence-fitness pairs.
Based on this function, additional variants can be evaluated com-
putationally, allowing exploration of the sequence space at a scale
that cannot be achieved through laboratory experiments alone.[26]
The potential benefits of ML make it an attractive research objec-
tive, and multiple attempts to apply it to protein engineering have
been made. This report is by no means meant to cover them ex-
haustively but instead focuses on work related to research carried
out in the frame of NCCR Catalysis.

2. ML-aided Optimization of Enzyme Stereoselectivity
From an organic chemist’s perspective, facilitating the tailor-

ing of the stereo- and regioselectivity of enzymes might be one of
the most exciting applications of ML in protein engineering.[27] In
this context, a first ML-driven study to improve enantioselectivity
for the selective ring opening of a racemic mixture of glycidyl
phenyl ether catalyzed by an epoxide hydrolase from Aspergillus
niger (ANEH) was published in 2012.[21,28] More selectiveANEH
variants were predicted through the adaptive substituent reorder-

Fig. 1. Integration of in silico tools into directed evolution of proteins.
As the random generation of genetic diversity is often inefficient when
targeting to improve a desired function, information from various bioin-
formatic sources, such as phylogeny, docking, tunnels, and ML tools,
can be used to build ‘smart’ enzyme libraries. Additionally, ML methods
might be able to learn the underlying enzyme fitness landscape and
suggest improved variants which have not yet been experimentally
screened. Image created with BioRender.com.
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tein engineering,[39–41] we then explored the remaining sequence
space in silico. Toward this goal, we first represented each variant
numerically by concatenating the physicochemical and biochemi-
cal properties of the amino acids at each mutation site. Multiple
amino acid descriptors exist, such as the very comprehensive
AAindex[42] or the T-scale descriptor.[43] In our case, combining
the T-scale descriptor and selected additional amino acid charac-
teristics[44] produced the best results. With this representation in
hand, we trained a Gaussian process. Gaussian processes have
received increased attention in the ML community and have also
been applied successfully to protein engineering.[39,40]They are ac-
curate and flexible methods for regression and classification and
can give a reliable estimate of their own uncertainty. Following
training, our model was then used to make activity and regiose-
lectivity predictions on the library’s unexplored sequence space.
The best-predicted variants were synthesized and experimentally
assayed toward their activity and regioselectivity. Gratifyingly,
all seven variants predicted towards increased activity performed
well, with four halogenases outperforming the previous best vari-
ant (Fig. 3). Similarly, the variants predicted towards selectivity
exhibited the desired enzyme trait: While seven out of eight pro-
duced halogenases showed high selectivity toward the chlorinated
soraphen regioisomer 1b, variant ‘LHG’ exhibited not only abso-
lute regio-selectivity but also a doubled activity compared to the
previous best 1b producing variant.[37]

Overall, the algorithm-aided evolution process generated ha-
logenase variants capable of synthesizing three distinct chlori-
nated species from soraphen A and its derivative soraphen C in
quantities sufficient for biological testing. In the phenotypic tests,
which were carried out on six key pathogens in crop protection,
we found that soraphen A derivative 1b showed an overall better
performance than 1a whereas a chlorinated soraphen C derivative
displayed higher species selectivity than the other investigated
compounds.[35]

A further successful computational technique in protein engi-
neering is the analysis of protein sequence activity relationships
(ProSAR), which has been successfully applied to construct sev-

3. ML-aided Optimization of Enzyme Activity
Complementing the above-described applications of ML to

boost enzyme stereoselectivity, we set out to explore algorithm-
aided engineering of regioselectivity and activity. Interested in
the late-stage functionalization of complex molecules by direct
enzymatic CH activation, we explored the potential of Fe(ii)/α-
ketoglutarate dependent halogenases for the selective halogena-
tion of soraphen A,[35] a potent anti-fungal agent and a target of
pharmaceutical interest.[36] We identified a suitable starting se-
quence capable of catalyzing the desired halogenation reaction in
a previously engineered variant of the halogenase WelO5* from
Hapalopsiphon welwitschii IC-52-2.[37] Notably, we found that
while the wildtype enzyme did not accept the bulky substrate,
variants that had been specifically engineered to have a broader
substrate spectrum exhibited activity.[37] Based on this initial ref-
erence and additional docking studies, we selected three critical
residues (V81/A88/I161) for complete randomization, e.g., re-
placement of each amino acid by all other 19 amino acids. As
delineated above, the theoretical size of such a library calculates
to 203. However, due to the redundancy of the genetic code and
sampling reasons, the actual screening effort required to cover all
combinations exhaustively increases. Specifically, if the screening
aim is to cover at least 95% of all encoded variants in a library,
a three-fold oversampling should be targeted,[38] challenging ex-
perimentalists.

In our halogenase engineering project, we thus opted to ex-
plore ML methods to reduce the experimental screening burden
and accelerate the identification of beneficial mutations. Notably,
our study considered two main engineering objectives: Firstly, we
targeted to increase the overall chlorination activity of the enzyme
variants, and secondly, we aimed to control the regioselectivity
of the halogenation reaction, which would allow the analysis of
several derivatized macrolides in structure-function relationship
assays.[35]

As a first step, we experimentally confirmed 504 unique ha-
logenase sequence–function pairs, corresponding to 6.3% of the
theoretical library. Based on previous applications of ML in pro-

Fig. 3. a) Overview of the experimentally determined activity and regioselectivity results of the three-site combinatorial library of WelO5* (green) and
the predicted variants towards activity (blue) and selectivity (orange). Halogenase variants were capable to produce two chlorinated products of
soraphen A (1a and 1b). The y-axis shows the regioselectivity of chlorination. The selectivity (S) is calculated using the formula S = (SIM1a – SIM1b)/
(SIM1a + SIM1b). Activity data is normalized to a reference variant (GAP), which was included as an internal reference on each measured 96-well plate.
Each variant with a fold-improvement greater than 3.5 is highlighted with a three-letter code representative of the introduced mutations compared
to wildtype. For example, V81V/A88L/I161A is shortened to VLA. b) Docking of soraphen A (black) into a model of variant WelO5* V81G/I161P (light
blue). The enzyme model was generated using SWISS-MODEL[68] and the crystal structure of WelO5 (PDB ID: 5J4R) as a template. The macrolide
soraphen A was docked using AutoDock Vina.[69] The red spheres indicate the targeted positions for the full randomization of the library.
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4. ML-aided Optimization of Enzyme Stability
Of course, there are other protein properties that researchers

attempt to engineer with computational methods, including en-
zyme stability.[56,57]Notably, a study on theML-aided engineering
of hydrolases for PET depolymerization[58] has recently managed
to garner mainstream media attention. Even though more active
PET degrading enzymes have previously been developed,[59] the
approach is worth highlighting. The involved researchers relied on
MutCompute,[60] a 3D self-supervised convolutional neural net-
work, to predict stabilizing mutations. The neural network was
trained on a large set of experimentally determined structures from
the protein data bank to associate amino acids with neighboring
chemical microenvironments with the goal to identify novel gain-
of-function mutations.[60] MutCompute was then used to predict
which amino acids are not in an optimal configuration for their
local environments, effectively performing a single-site satura-
tion scan across all residues in the protein computationally. Sites
which the algorithm identified as ‘abnormal’were then optimized
according to predicted probabilities. This technique was applied
to the PET-hydrolysing enzyme (PHE) from Ideonella sakaiensis
(PETase),[61]andpreviouslyengineeredvariantsThermoPETase[62]
and DuraPETase.[63]Validation of the predicted changes revealed
scaffolds with improved thermostability (up to 10 °C ΔT

m
com-

pared to the respective reference variant), increased protein yield
(up to 3.8 fold increase), as well as enhanced catalytic activity (up
to 29 fold at selected temperatures).[58]

It should be noted that the MutCompute-type approach is quite
different from the examples highlighted above. Rather than learn-
ing from a subset of the theoretically available data and predicting
fitness within a defined sequence space, biological information is
extracted from vast and ever-growing protein databases harnessing
the fact that evolution seems to record information about structure
and function into evolutionary patterns.[64]This information can be
captured, to some extent, by these models and help guide decisions
in downstream tasks,[65] complementing and improving the repre-
sentations used to buildmodels in other machine-learning projects.

5. Conclusion and Outlook
ML is having a notable impact on the biological sciences. Just

a few years ago, determining a single protein structure could be
a month to year-long process; now, structures can be predicted
with similar accuracy within seconds.[64,66] As first engineering
examples suggest (vide supra), the information contained within
the vast sequence and structure datasets already collected might
be able to facilitate meaningful predictions even from a few ex-
perimentally determined data points. However, not all aspects of
protein engineering will benefit equally from ML. The additional
costs incurred by sequencing variants, synthesizing the predicted
genes, and the time and resources needed to ensure that high-
quality data is being provided to train the algorithms must be
weighed carefully with the advantages ML provides compared
to simply combining beneficial mutations with additive effects.
[67] Currently, no clear benchmarks to assess such a benefit exist,
as ML accelerated protein engineering examples are scarce, and
validating algorithms are restricted to only a handful of datasets.
[35,60]Yet, as the field of algorithm-aided enzyme evolution is be-
ing more firmly anchored into the biocatalysis sector and gene
synthesis and sequencing technologiesmature further, we are con-
fident that the in silico techniques will evolve into a key element to
help address the numbers problem in directed evolution.
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eral highly optimized enzyme variants.[45,46]This technique, which
was first published in 2005 by the US-based enzyme engineering
company Codexis, facilitated the development of a halohydrin de-
halogenase (HHDH) for the industrial production of ethyl (R)-4-
cyano-3-hydroxybutyrate (HN), improving the enzyme’s activity
by ~4,000 fold compared to the initial wildtype enzyme (Fig. 4a).
To achieve this goal, more than 18 rounds of evolutionwere carried
out, during which 35 distinct mutations were introduced into the
wildtype scaffold.[47] In later studies, ProSAR was also employed
to increase the stability of a carbonic anhydrase (CA), translat-
ing to a 4,000,000-fold improvement over the wildtype in terms
of compounded thermostability and alkali tolerance (Fig. 4c).[16]
Furthermore, ProSAR enabled the development of a 140,000-fold
improved Baeyer-Villiger monooxygenase for the commer-
cial manufacture of esomeprazole used in the blockbuster drug
Nexium® by engineering the natural biocatalyst over 19 rounds of
evolution.[48]Very recently, ProSAR aided in identifying beneficial
mutations in the evolution campaign of an amine transaminase,
highly optimized for the efficient production of a chiral sacubitril
precursor, a key component of a critical heart failure drug (Fig.
4b).[49]

The multivariate optimization strategy fueling the examples
above is an iterative process consisting of diversity generation
and statistical modeling. During diversity generation, potentially
interesting mutations are generated from various methods, such
as rational design, homology modeling, and random mutagene-
sis. These mutations are then evaluated in combinatorial libraries
of varying sizes and screened for activity. A small fraction of this
library is sequenced, typically in the order of 3*N, where N is the
number of diverse mutations. The generated sequence data then
serves as the training set for the statistical analysis. In ProSAR,
the statistical modeling step is based on the PLS variable regres-
sion technique,[45]which projects the sequence representations to
a space of reduced dimensionality to fit a linear model.[50,51] The
regression coefficients assigned to each variable represent the
impact of a mutation on fitness and are used to decide whether
mutations should be retained, discarded, or evaluated again in a
different context.[47] Notably, it is not necessarily a priority of
ProSAR to find the best variant in each round but rather to rapidly
identify beneficial mutations for recombination to reach fitness
targets.[16]

As delineated above, the ProSAR-driven approach focuses
on parallelized, fast, and efficient iterations in short timeframes.
However, not all biocatalysts can be assayed with high through-
put at a large scale, and consequently it might be necessary to
identify optimal sequences with minimized experimental bur-
den. Such a case was recently described by Greenhalgh et al.
who targeted an acyl-ACP reductase to produce fatty alcohols
in vivo.[52] The researchers relied on only 20 sequence–func-
tion pairs to initialize an iterative process consisting of in silico
prediction and experimental evaluations. Rather than predict-
ing which sequences were expected to show the highest activity
and evaluating only these variants, the next engineering round
was built on an upper-confidence bound criterion. This crite-
rion balances exploration and exploitation,[53,54] by simultane-
ously exploring areas of uncertainty within the sequence space
and assessing possibly improved variants. Such an approach is
particularly effective in minimizing the number of evaluations
of expensive experiments.[55] The researchers iterated over ten
design-test-learn cycles, sampling 10–12 sequences at each it-
eration, and saw gradual improvements in fatty alcohol titers,
cumulating in enzymes that produce above two-fold more fatty
alcohols than the wildtype sequences.[52] In our opinion, this
Bayesian-type optimization nicely contrasts the ProSAR ap-
proach, highlighting how project constraints define the optimi-
zation strategy to be used.
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Fig. 4. Overview of success-
ful ProSAR applications. a)
HHDH catalyzes a single-vessel
enzymatic conversion of ethyl
(S)-4-chloro-3-hydroxybutyrate
(2) to ethyl (R)-4-cyano-3-
hydroxybutyrate (3). Variants
with ~4,000 fold improvements
over wildtype were identified
after screening approximately
60,000 variants.[47] The evolved
protein structure is depicted as
a cartoon and mutated residues
are visualized as red spheres.
b) Engineering of an amine
transaminase for the efficient
production of (2R,4S)-5-biphenyl-
4-amino-2-methylpentanoic acid
(5), a precursor to a critical com-
ponent in the blockbuster heart
failure drug Entresto®. The final
transaminase variant, obtained
after 11 rounds of evolution, en-
ables an economic conversion
of ketone 4 with high yield and
purity.[49]The evolved transami-
nase homodimer is shown as a
cartoon with mutated residues
highlighted as red spheres. c) An
engineered carbonic anhydrase
for efficient carbon capture from
flue gas. The evolved protein,
depicted in green with muta-
tions shown as red spheres, is
employed in an absorber column
(blue pillar) where CO2 chemi-
sorbs into an amine solvent. The
HCO3

– containing amine solvent
and the evolved enzyme are then
transferred to a second column,
where CO2 is stripped at elevated
temperatures (red pillar). The
depicted carbon capture system
represents one of the most chal-
lenging industrial environments
applied to enzymes.[16] Image cre-
ated with BioRender.com.
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