Benefit-Risk Assessment of Diesel Particle Filters (DPFs): An Analytical and a Toxicological Challenge

Norbert Heeb*a, Regula Haaga, Peter Schmidib, Cornelia Seiler,a Adrian Wichsera, Markus Zennegga, Peter Honeggera, Kerstin Zeyerb, Lukas Emmeneggerb, Yan Zimmerlita, Jan Czerwinskič, and Andreas Mayerd

*aCorrespondence: Dr. N. Heeb, Tel.: +41 58 765 42 57, E-Mail: norbert.heeb@empa.ch
*cAUSB, University of Applied Sciences Biel, Gwerdistrasse 5, CH-2550 Nidau. 
*dTTM, Technik Thermischer Maschinen, Fohrholzstrasse 14b, CH-5443 Niederrohrdorf.

Keywords: Diesel particle filters, Genotoxicity, Heavy duty vehicles, Nitro-PAHs, PAHs, PCDD/Fs

Filter or no filter is not the question anymore, except perhaps in the Swiss parliament which voted against a retrofit program for heavy duty vehicles in May 2014. In R&D, one asks if catalyzed or non-catalyzed filters are the best available technology for detoxification of diesel exhaust. Assessing the impact of filters on exhaust composition and toxicity is challenging for analytical chemists and toxicologists (see the Highlight of Bisig et al., Chimia 2015, 69, 68). Are toxic compounds reactive species triggering oxidative stress and inflammation, are they genotoxic inducing cancer or do they provoke other cell responses?

The endeavor ‘NEAT’ (Neue Alpentransversale, the new transalpine rail link) triggered various activities, among them the VERT project (Verminderung der Emissionen von Realmaschinen im Tunnelbau) – a joint effort from SUVA, BAFU, filter and catalyst manufacturers, TTM, and EMPA – to evaluate suitable filter technology for construction machinery to fulfill air quality standards in these long tunnels (Fig. 1).

By now all construction machinery in Switzerland has to be equipped with filters since 2009, but most trucks on roads are not.

Fig. 1. Construction machinery in Switzerland has to be equipped with filters since 2009, but most trucks on roads are not.

Fig. 2 displays sampling filters, exposed to 7 m³ exhaust (3 min operation) of a heavy duty engine (6.1 L). A VERT-approved diesel particle filter was used in one case. The other sample represents untreated heavy duty vehicle exhaust (94% of the Swiss HDV fleet).

Obviously, particles are removed with filters, but semi-volatile compounds including genotoxic PAHs and nitro-PAHs are not necessarily converted. An assessment of filters, now described in the Swiss Norm 277206, also includes an evaluation of genotoxic compounds. EMPA has contributed congener-specific PAH, nitro-PAH and PCDD/F analyses for >40 diesel particle filters with GC-HRMS.

Fig. 3 compares pyrene and 1-nitropyrene penetration of filters with high, low and no oxidation potential. Catalyzed filters convert pyrene (75–97%). The non-catalyzed filter stored pyrene when new, but released it when soot-loaded. Such storage-release phenomena may occur when changing from cold to hot conditions (e.g. urban vs. highway driving). Emissions of 1-nitropyrene even increased for the non-catalyzed filter. A secondary formation of nitro-PAHs occurs when soot-loaded.

References

Can you show us your analytical highlight?
Please contact: Dr. Veronika R. Meyer, EMPA St.Gallen, Lerchenfeldstrasse 5, 9014 St.Gallen
Phone: +41 58 765 77 87, Fax: +41 58 765 77 62, Mail to: veronika.meyer@empa.ch